
R for Korean Studies: A Gentle Introduction
to Computational Social Science

Draft Version: 0.0.2

Kadir Jun Ayhan, Ph.D.

2024-10-18

https://ayhan.phd

Table of contents

Preface 5

Current Status of the book 6

How to Cite This Book 7

1 Introduction 8
1.1 “Why Do I Need Computational Tools in Korean Studies?” 8
1.2 “Why R?” . 8
1.3 “I don’t know anything about coding! Indeed, I am frustrated about coding!” . . 9

2 Setting Up 10
2.1 Installing R . 10
2.2 Installing RStudio . 10
2.3 Running R on RStudio . 10
2.4 Further Information . 11

3 Korean Studies Data Sources 12
3.1 Statistical Data . 12
3.2 Text Data . 12

4 The Basics of R 13
4.1 Creating a Project . 13
4.2 Scripting in R . 14

4.2.1 Creating a New R Script . 14
4.2.2 Creating a Quarto File . 14

4.3 Installing Packages . 16
4.4 Loading Packages . 16
4.5 Assigning Values to Variables . 17
4.6 Make sure to get the spelling right! . 18
4.7 Data Types . 19
4.8 Vectors . 20
4.9 Dataframes . 21
4.10 Some Basic Functions . 22
4.11 Rows and Columns . 24
4.12 Piping . 25

2

5 Data Wrangling 27
5.1 Selecting columns . 28
5.2 Filtering rows . 29
5.3 Arranging rows . 32
5.4 Mutating columns . 33
5.5 Grouping and summarizing data . 34
5.6 Conditional Mutating . 35
5.7 Merging datasets . 36

5.7.1 inner_join . 40
5.7.2 left_join . 43
5.7.3 right_join . 45
5.7.4 full_join . 47
5.7.5 anti_join . 49

5.8 A Note on Country Codes . 51
5.9 A Note on Working with Korean Country Names 52

5.9.1 Converting wide data to long format 53
5.9.2 iso3c_kr function to convert Korean country names to iso3c country

codes . 55
5.10 Working with dates . 58

6 Data Visualization: Tables 59

7 Data Visualization: Plots 60
7.1 Histograms . 62
7.2 Bar Plots . 66
7.3 Line Plots . 68
7.4 Scatter Plots . 70

8 Data Visualization: Maps 74

9 Korean Text Analysis 75
9.1 Libraries . 75
9.2 Loading pdf Data . 76
9.3 pdf Table Extraction . 80
9.4 html Table Extraction . 82
9.5 Text Analysis . 84

9.5.1 Word Frequency . 84
9.5.2 Spacing in Korean Text . 85
9.5.3 Morpheme Analysis in Korean Text 87
9.5.4 Word Network in Korean Text . 89
9.5.5 Sentiment Analysis . 92
9.5.6 Topic Modeling . 92

9.6 Korean Tweet Analysis . 92

3

9.7 Further Readings . 92
9.8 References . 92
9.9 Session Info . 92

10 Statistical Analysis 95

11 Storytelling with Quarto 96

12 Productivity Tools 97

13 Working with API to get Korean Data 98

14 Making Korean Data Visualization Social 99
14.1 #kdiplo #kdiploviz . 99
14.2 #kdata #kdataviz . 100

15 R for Korean Studies Bootcamps 101

References 102

4

Preface

Korean Studies is traditionally dominated by scholars of history and literature. It’s relatively
rare to see R, Python, or other computational social science tools being used or taught in this
field.

I believe computational social science offers huge opportunities for Korean Studies, not only
for quantitative research but also for qualitative studies, including those on history and litera-
ture!

In this book, I aim to increase data literacy and convince as many Korean Studies scholars and
students as possible about the relative ease of learning R with code samples, and motivational
case studies about Korea.

This book is supposed to be a gentle introduction, so I do not go into the details of the R
language. You can refer to the links that I provide in this book for more information. Fur-
thermore, I also strongly encourage you to use Github's Copilot which is free for academic
use, Chatgpt which is not necessarily a coding bot, but still helpful especially for simple tasks,
Stackoverflow, and Google for help whenever you are stuck or come across an error.

I also encourage you to join our bootcamps for problem solving! You can sign up for my
newsletter to get updates on the workshops.

5

https://github.com/features/copilot
https://chat.openai.com/
https://stackoverflow.com/
https://www.google.com
https://mailchi.mp/29054dcc1b0d/dr-ayhan-newsletter
https://mailchi.mp/29054dcc1b0d/dr-ayhan-newsletter

Current Status of the book

• 0.Preface: Done
• 9.Text Analysis: 50% Done
• 14.Making Korean Data Visualization Social: Done
• 15.Bootcamp: Done

I will complete the Text Analysis chapter and then move on to the next chapters. Subscribe
to my newsletter to get updates on the book and the bootcamps.

6

https://mailchi.mp/29054dcc1b0d/dr-ayhan-newsletter

How to Cite This Book

This book This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 United States License. You can check the license here.

You can freely use this book, but you must cite my work to avoid plagiarism. You can cite it
in the following way: (Ayhan 2024).

@book{ayhan_2024_r4ks,
title = {R for {Korean Studies}: A Gentle Introduction to {Computational Social Science}},
author = {Ayhan, Kadir Jun},
year = {2024},
month = {May},
edition = {Draft Version 0.0.1},
url = {https://r4ks.com}

}

7

https://github.com/kjayhan/R4KS/blob/master/LICENCE

1 Introduction

Recently, I had to repeat myself while talking to a few students about Ewha GSIS
Computational Social Science Workshop(s). Now, you and future students have
this post instead!

This is what I wrote in my blog post about Ewha GSIS Computational Social Science Work-
shops that I have organized.

Following the same spirit in David Robinson’s tweet, I decided to write this book.

1.1 “Why Do I Need Computational Tools in Korean Studies?”

Simply put, there is so much more data out there that is useful for Korean Studies research,
and we have faster computers, and handy tools to analyze such data.

Korean Studies curricula across the world are quite rich and interdisciplinary. Those courses
often equip students with the history, culture, literature, and language of Korea to understand
the country better. Yet, Korean Studies scholars and students are not exposed to computa-
tional methods/ tools that can handle big or complex data as much.

If you are already here, it probably means that you appreciate the increasing importance of
the computational tools in your research. This book, and bootcamps based on this book,
will teach you the basics of R, and give you sample codes based on Korean Studies-related
examples.

In the age that we live in, I strongly believe that these computational methods/ tools will em-
power you in your research as well as in the job market given wide range of prospective jobs
Korean Studies graduates seek and find (corporations, international organizations, think tanks,
NGOs, media, academia etc.).

1.2 “Why R?”

R is free! There are so many packages that are rich with a wide range of functions that you
would need in all kinds of research, analysis, and reporting. Many more are being built as you
read this book! You can do from simple math to data pre-processing, from data visualization to

8

https://ayhan.phd/blog/2023-01-15%20Ewha%20Computational%20Social%20Science%20Workshop/

regressions, from building your CV to building your website, from analyzing tweets to machine
learning.

Python is probably getting more popular in the industry jobs in recent years. Yet, I think, for
the time being, R is better suited for social science research. At least there are more books,
tutorials, examples that you can learn from in terms of social sciences.

Once exposed to R, you may also consider learning Python as well if it seems more attractive
for you.

1.3 “I don’t know anything about coding! Indeed, I am frustrated
about coding!”

Then this book, and the bootcamps, are very much for you! I don’t expect the readers, and
bootcamp participants, to have any prior knowledge of R, coding, or other statistical soft-
ware.

This book is supposed to be a gentle introduction, so I do not go into the details of the R
language. You can refer to the links that I provide in this book for more information. Fur-
thermore, I also strongly encourage you to use Github's Copilot which is free for academic
use, ChatGPT which is not necessarily a coding bot, but still helpful especially for simple tasks,
Stackoverflow, and Google for help whenever you are stuck or come across an error.

Learning curve is steep in the beginning. So you may need a trigger to begin and NOT GIVE
UP. This book plays this trigger role. So, there is no need to be intimidated by R, or your lack
of background with coding. I got you covered!

9

https://github.com/features/copilot
https://chat.openai.com/
https://stackoverflow.com/
https://www.google.com

2 Setting Up

Both R and Rstudio are free to use, and setting them up is quite straightforward.

R is a programming language and software environment, produced mainly for statistical com-
puting and graphics. RStudio is an integrated development environment (IDE) for R (as well
as for other programming languages including Python, Stan, Julia and others).

In order to use R, installing RStudio is not enough. Installing R is enough, but RStudio is
recommended for a better experience.

You can use R in other IDEs, such as VS Code as well, but RStudio is the most popular and
widely used IDE for R.

2.1 Installing R

You need to install R on your computer. You can download the latest version of R from the
CRAN website by clicking one of the mirror links in a location that is close to you. In the next
page, you can download the installer for your operating system (Windows, Mac, or Linux).

2.2 Installing RStudio

After installing R, you can download RStudio from the RStudio website. You can download
the free version of RStudio Desktop by clicking 2: Install RStudio on the right. It automatically
recognizes your operating system and downloads the correct installer for you.

2.3 Running R on RStudio

After installing R and RStudio, you can open RStudio and start using R.

When you open RStudio, you will see something like in the Figure 2.1.

10

https://code.visualstudio.com/
https://cran.r-project.org/mirrors.html
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/

Figure 2.1: RStudio

Well, what you will see will be a default white screen, but you can customize it to look like
the one in the image. You can change the theme of RStudio by going to Tools > Global
Options > Appearance and selecting the theme you like.

For now, pay attention to the two panes in RStudio:

1. Console: This is where you can write your R code. For example try writing 1+1 and
clicking enter there. You will see the result in the console.

2. Environment: This is where you can see the objects you have created in your R session.
For example, if you write x <- 5 (that is assigning the number ‘5’ to an object named
‘x’) in the source pane, you will see x in the environment pane.

Check out the The Basics of R chapter to learn the basics of R.

2.4 Further Information

You can refer to the following video for further help on installing R and RStudio, unless above
information is enough.

https://youtu.be/ulIv0NiVTs4

11

basics.qmd
https://youtu.be/ulIv0NiVTs4

3 Korean Studies Data Sources

3.1 Statistical Data

3.2 Text Data

12

4 The Basics of R

In this chapter, we learn the basics of R.

4.1 Creating a Project

For each of your new projects, you should create a new project in RStudio. To do this, click on
the “File” menu, then “New Project”. You will be asked to choose a directory for your project.
Choose a directory where you want to store your project files. You can also create a new
directory for your project. After you have chosen a directory, click on “Create Project”. You
will see a new RStudio window with your project. You can now start working on your project.

For now, this is all you need to know about creating a project. We learn more about projects
that are connected with Github in the Productivity Tools chapter.

When you work within a project, managing the files for your project becomes easier. When
you work within the project, you don’t need to worry about getting and setting your working
directory. To give you an idea, this is how you can find the working directory for your project:

getwd()

[1] "/Users/pd/Library/CloudStorage/OneDrive-Personal/R/projects/R4KS"

You can also set the working directory to some other path using the setwd() function. But you
don’t need to do this when you work within a project. On another note, when you are writing
code script in an R script file or within a code chunk, you can add non-code comments like
this by adding a # sign at the beginning of the line.

You can uncomment a comment line and make it a code line by removing the '#' sign at the beginning of the line.

Replace "path/to/your/directory" with the actual path to your directory (folder) that you want to work in.

Try removing the '#' sign at the beginning of the line and running the code.

setwd("path/to/your/directory")

13

https://github.com/
productivity.qmd

When you work within a project, you don’t need to worry about the working directory. You can
store all the files for your project in the project directory. You can also save your R scripts in
the project directory. This way, you can easily find the files for your project.

4.2 Scripting in R

You can simply type your R code in the console and press Enter to run the code. But this is
not a good practice. You should write your code in a script file and then run the script file. This
way, you can save your code and run it again whenever you want. You can also share your
code with others.

One of the most important advantages of R, for example over Excel, is that you can reproduce
your results. That’s why you should write your code in a script file. Every time you exit R, you
should save your R script(s) and then rely on them next time you work on the same project.

4.2.1 Creating a New R Script

The most basic way to create a new R script is to click on the “File” menu, then “New File”,
and then “R Script”. You will see a new R script file in the RStudio editor. You can now write
your R code in this file.

4.2.2 Creating a Quarto File

You can also create a new Quarto file by clicking on the “File” menu, then “New File”, and then
“Quarto File”. You will see a new Quarto file in the RStudio editor. You can now write your R
code in this file.

Quarto allows you to write your code in chunks. In between chunks, you can have other text,
images, and other content. You can also run the code in each chunk and see the output in
the document. This is a great way to write reports, papers, and books.

Personally I prefer to write my code in Quarto files. When you click to create a new Quarto file,
it will ask you to add a title and author, and select a format for your Quarto file. I explain Quarto
further in the Storytelling with Quarto chapter. For now, click “Create Empty Document” on
the left bottom. Click File > Save and save you Quarto document in your project directory.

On the top right of the RStudio editor, you can see a green C button with a + sign. That button
allows you to insert a code chunk in your document. See Figure 4.1.

Then after you write your code and when you want to run the code in a chunk, you can click
on the green Run button on the right side of the chunk. See Figure 4.2.

14

quarto.qmd

Figure 4.1: Quarto: Inserting a New Code Chunk

Figure 4.2: Quarto: Running a Code Chunk

15

When you are working in a simple R script, you don’t need to worry about chunks. You can
simply write your code in the script file and select the lines of code you want to run and click
on the Run button.

4.3 Installing Packages

Packages in R are like apps for your phone. Just like your phone comes with some basic apps,
R comes with 14 base packages (as of May 11, 2024) including base, utils, and stats. But
you can, and you will need to, install other packages to do different things just like you install
apps on your phone.

You can install a package using the install.packages() function. This book uses the
tidyverse package, which is a universe of packages that follow a common “tidy” data
philosophy.

You can install the tidyverse package using the following command:

uncomment the following line by removing "#" and run the code to install the tidyverse package

install.packages("tidyverse")

You need to install the packages you need only once, and then you can use them whenever
you want.

4.4 Loading Packages

Just like apps on your phone, you need to load the packages you need every time you start
a new R session. You can load the package using the library() function. For example, to
load the tidyverse package, you can use the following command:

library(tidyverse)

The [tidyverse](https://tidyverse.org/) package is a collection of packages including
ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats, rvest, lubridate, and a
few other packages. We learn some of these packages in this book. Once you load the
tidyverse package, you can use all the functions in these packages. In other words, you don’t
need to load, for example, the ggplot2 package separately by running library(ggplot2).

16

https://cran.r-project.org/doc/FAQ/R-FAQ.html#Which-add_002don-packages-exist-for-R_003f
https://tidyverse.org/
https://r4ds.had.co.nz/tidy-data.html#tidy-data-1
https://dplyr.tidyverse.org/

4.5 Assigning Values to Variables

You can assign values to variables in R using the <- operator. For example, you can assign
the value 14 to a variable x using the following command:

x <- 14

After assigning 14 to x, you can use x in your code. For example, you can print the value of
x using the following command:

print(x)

[1] 14

See, x is now 14. You can also see the value of x by typing x in the console and pressing
Enter. Try it.

x

[1] 14

You can also make additional data manipulations using x and assign it to another variable y
using the following command:

y <- x + 3

Let’s see the value of y:

y

[1] 17

R is an advanced calculator. You can do all kinds of calculations using R. For example, check
out the following calculations:

Square root of 16
sqrt(16)

[1] 4

17

2 to the power of 8
2^8

[1] 256

Logarithm of 100
log(100)

[1] 4.60517

Exponential of previously assigned value y, i.e. 17, times x, i.e. 14.
exp(y) * x

[1] 338169339

You can also assign a character string to a variable. For example, you can assign the string
“한국학 학자들 및 학생들도 R 좀 배웠으면 좋겠다.” to a variable z using the following com-
mand:

z <- "��� �� � ���� R � ���� ���."

You can print the value of z using the following command:

z

[1] "��� �� � ���� R � ���� ���."

4.6 Make sure to get the spelling right!

As a novice R user, more often than not, you will get error messages because you make
mistakes in spelling. For example, we assigned the value 14 to a variable x. If you try to print
the value of X instead of x, you will get an error message. Try it.

Uncomment the following line by removing "#" and run the code to see the error message.

X

18

You will get an error message saying that “Error: object ‘X’ not found”. This is because R is
case-sensitive. X is not the same as x. Make sure to get the spelling right.

If you want to use more than two words for a variable name, you can use an underscore _
(my_variable) or a dot . (my.variable) to separate the words; or you can write the words
together with each newword beginning with a capital letter (myVariable). You better be consis-
tent with your naming convention, although technically you can name your variables however
you want. For example, you can assign c("��", "��", "��", "��") to a variable my_variable
using the following command:

my_variable <- c("��", "��", "��", "��")

4.7 Data Types

R has several data types including numeric, character, logical, date, list, dataframe and so on.
Let’s see the data types of the variables we created above. We can use the class() function
to see the data type of a variable. For example, you can see the data type of x, y, and z using
the following commands:

class(x)

[1] "numeric"

class(y)

[1] "numeric"

class(z)

[1] "character"

The data type of x and y is numeric, and the data type of z is character.

If we write numbers in quotes, they become character strings. For example, you can assign
the string “14” to a variable w using the following command:

w <- "14"

You can see the data type of w using the following command:

19

class(w)

[1] "character"

The data type of w is character. You can also turn it into a numeric value using the
as.numeric() function. For example, you can turn w into a numeric value using the following
command:

w <- as.numeric(w)

4.8 Vectors

A vector is a collection of elements of the same data type. You can create a vector using the
c() function. For example, you can create a vector v with the elements “서울”, “부산”, “대구”,
“인천”, and “대전” using the following command:

v <- c("��", "��", "��", "��", "��")

You can print the vector v using the following command:

v

[1] "��" "��" "��" "��" "��"

You can see the data type of v using the following command:

class(v)

[1] "character"

The data type of v is character. You can also create a numeric vector. For example, you can
create a vector numberswith the elements 1, -2, 3.1, 49, and 0 using the following command:

numbers <- c(1, -2, 314, -49, 0)

You can print the vector numbers using the following command:

20

numbers

[1] 1 -2 314 -49 0

You can see the data type of numbers using the following command:

class(numbers)

[1] "numeric"

The data type of numbers is numeric.

4.9 Dataframes

A dataframe is a collection of vectors of the same length. You can create a dataframe using
the data.frame() function. For example, you can create a dataframe df with three columns
city_name_en, city_name_kr, and population using the following command:

Relying on this link for the population data (in millions):
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B040A3

df <- data.frame(city_name_en = c("Busan", "Daegu", "Incheon", "Seoul", "Daejeon"),
city_name_kr = c("��", "��", "��", "��", "��"),
population = c(3.3, 2.4, 3, 9.4, 1.4))

You can print the dataframe df using the following command:

df

city_name_en city_name_kr population
1 Busan �� 3.3
2 Daegu �� 2.4
3 Incheon �� 3.0
4 Seoul �� 9.4
5 Daejeon �� 1.4

You can see the data type of df using the following command:

21

class(df)

[1] "data.frame"

The data type of df is dataframe. We can reach the columns of the dataframe using the $
sign. For example, you can see the column city_name_en using the following command:

df$city_name_en

[1] "Busan" "Daegu" "Incheon" "Seoul" "Daejeon"

4.10 Some Basic Functions

You can use the head() function to see the first few rows of a dataframe. For example, you
can see the first few rows of the dataframe df using the following command:

head(df)

city_name_en city_name_kr population
1 Busan �� 3.3
2 Daegu �� 2.4
3 Incheon �� 3.0
4 Seoul �� 9.4
5 Daejeon �� 1.4

By default, the head() function shows the first 6 rows of the dataframe. You can also specify
the number of rows you want to see. For example, you can see the first 3 rows of the dataframe
df using the following command:

head(df, 3)

city_name_en city_name_kr population
1 Busan �� 3.3
2 Daegu �� 2.4
3 Incheon �� 3.0

You can use the tail() function to see the last few rows of a dataframe. For example, you
can see the last few rows of the dataframe df using the following command:

22

tail(df)

city_name_en city_name_kr population
1 Busan �� 3.3
2 Daegu �� 2.4
3 Incheon �� 3.0
4 Seoul �� 9.4
5 Daejeon �� 1.4

In this example, both the head() and tail() functions show the entire dataframe because
the dataframe df has only 5 rows. But, in longer dataframes, you can see the first or last few
rows using these functions.

In a similar vein, glimpse() function from the dplyr package is a function to see the structure
of a dataframe. For example, you can see the structure of the dataframe df using the following
command:

glimpse(df)

Rows: 5
Columns: 3
$ city_name_en <chr> "Busan", "Daegu", "Incheon", "Seoul", "Daejeon"
$ city_name_kr <chr> "��", "��", "��", "��", "��"
$ population <dbl> 3.3, 2.4, 3.0, 9.4, 1.4

The nrow() function gives the number of rows in a dataframe. For example, you can see the
number of rows in the dataframe df using the following command:

nrow(df)

[1] 5

Likewise, the ncol() function gives the number of columns in a dataframe. For example, you
can see the number of columns in the dataframe df using the following command:

ncol(df)

[1] 3

23

https://dplyr.tidyverse.org/

The dim() function gives the dimensions of a dataframe. For example, you can see the
dimensions of the dataframe df using the following command:

dim(df)

[1] 5 3

The summary() function gives a summary of a dataframe. For example, you can see the
summary of the dataframe df using the following command:

summary(df)

city_name_en city_name_kr population
Length:5 Length:5 Min. :1.4
Class :character Class :character 1st Qu.:2.4
Mode :character Mode :character Median :3.0

Mean :3.9
3rd Qu.:3.3
Max. :9.4

4.11 Rows and Columns

You can select rows and columns of a dataframe using the [] operator. The first argument
of the [] operator is the row index, and the second argument is the column index. df[row,
column] selects the row with the index row and the column with the index column.

For example, you can select the first row and the second column of the dataframe df using
the following command:

df[1, 2]

[1] "��"

You can select the first row of the dataframe df using the following command:

df[1,]

city_name_en city_name_kr population
1 Busan �� 3.3

24

You can select the second column of the dataframe df using the following command:

df[, 2]

[1] "��" "��" "��" "��" "��"

4.12 Piping

The pipe operators |> and %>% are powerful tools in R.1 The pipe allows you to write code in
a more readable way. You can use the pipe operator to pass the output of one function to the
input of another function. For example, you can use the pipe operator to pass the dataframe df
to the head() function. You can see the first few rows of the dataframe df using the following
command:

df |> head()

city_name_en city_name_kr population
1 Busan �� 3.3
2 Daegu �� 2.4
3 Incheon �� 3.0
4 Seoul �� 9.4
5 Daejeon �� 1.4

We can arrange the dataframe df using the arrange() function from the dplyr package. For
example, you can arrange the dataframe df by the population column using the following
command with a pipe:

df |> arrange(population)

city_name_en city_name_kr population
1 Daejeon �� 1.4
2 Daegu �� 2.4
3 Incheon �� 3.0
4 Busan �� 3.3
5 Seoul �� 9.4

1In most cases, these two pipes work the same way. Refer to this link for more explanation on the difference
between the base pipe |> and the magrittr pipe %>%. For now, you can simply ignore the difference.

25

https://dplyr.tidyverse.org/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/

arrange() function arranges the dataframe by the selected numeric column in ascending or-
der by default. If it is a character column, it arranges the dataframe in alphabetical order. You
can arrange the dataframe in descending order by using the desc() function. For example,
you can arrange the dataframe df by the population column in descending order using the
following command:

df |> arrange(desc(population))

city_name_en city_name_kr population
1 Seoul �� 9.4
2 Busan �� 3.3
3 Incheon �� 3.0
4 Daegu �� 2.4
5 Daejeon �� 1.4

We can also assign df to the rearranged dataframe. For example, you can assign the arranged
dataframe to df using the following command:

df <- df |> arrange(desc(population))

Now, df is arranged by the population column in descending order. Let’s check out:

df

city_name_en city_name_kr population
1 Seoul �� 9.4
2 Busan �� 3.3
3 Incheon �� 3.0
4 Daegu �� 2.4
5 Daejeon �� 1.4

Good. We learned the basics of R. In the next chapter, we learn about data wrangling using
mainly the dplyr package.

26

https://dplyr.tidyverse.org/

5 Data Wrangling

In this chapter, we will learn how to wrangle data mainly using the dplyr package. We will
learn how to select, filter, arrange, mutate, group, and summarize data. We will learn how
to join data from different sources, working with dates, and converting data to long and wide
formats.

As an example for this chapter, we will use Korea’s trade data, trade_data, from the kdiplo
package. Let’s install the package. You can install the development version from GitHub
with:

install.packages("devtools") # if you haven't installed the devtools package yet, remove the # sign.

devtools::install_github("kjayhan/kdiplo")

Let’s load the libraries and the data.

library(tidyverse) # load the tidyverse package which includes dplyr, ggplot2, tidyr, readr, purrr, and tibble and more.

library(kdiplo) # load the kdiplo package

Let’s take a quick look at the data.

head(trade_data)

A tibble: 6 x 18
iso3c country year export import total_export total_import export_kosis
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ABW Aruba 1965 NA NA 175082000 463442000 NA
2 ABW Aruba 1966 NA NA 250334000 716441000 NA
3 ABW Aruba 1967 NA NA 320229000 996246000 NA
4 ABW Aruba 1968 NA NA 455400000 1462873000 NA
5 ABW Aruba 1969 NA NA 622516000 1823611000 NA
6 ABW Aruba 1970 NA NA 835185000 1983973000 NA
i 10 more variables: import_kosis <dbl>, export_cow <dbl>, import_cow <dbl>,
index <dbl>, cpi <dbl>, export_cons_2015 <dbl>, import_cons_2015 <dbl>,

27

https://kdiplo.com/reference/trade_data
https://github.com/kjayhan/kdiplo/

total_export_cons_2015 <dbl>, total_import_cons_2015 <dbl>,
updated_at <date>

We can read the data’s documentation using the ? function.

?trade_data

Let’s assign the data to a new object.

trade_data <- trade_data

5.1 Selecting columns

We do not need all the columns in the data. We can select the columns we need using the
select() function. For now, I will select only five columns: iso3c (country code), country
(country name), year (year), export_kosis (Korea’s exports as reported by Korean Statistical
Information Service (KOSIS)), and import_kosis (Korea’s exports as reported by KOSIS).

We can either assign the updated object with the selected columns to the same object or a
new object. Here, I will assign the updated object to a new object.

trade <- trade_data |>
select(iso3c, country, year, export_kosis, import_kosis)

Let’s see how many rows and columns trade_data and trade have.

nrow(trade_data) # number of rows in trade_data

[1] 16511

ncol(trade_data) # number of columns in trade_data

[1] 18

nrow(trade) # number of rows in trade

[1] 16511

28

ncol(trade) # number of columns in trade

[1] 5

trade_data has 16511 rows and 18 columns. trade has 16511 rows and 5 columns.

5.2 Filtering rows

We can filter rows based on a condition using the filter() function. Here, I will filter rows
where the year is larger than 1964. Indeed, KOSIS data starts from 1965. This time, I will
assign the updated object to the same object. We need a condition for filtering. In this case,
the condition is year > 1964. It is the same as year >= 1965.

trade <- trade |>
filter(year > 1964)

Let’s create a new object with the data from only 2019. == is the condition for equality. We
need to use == instead of = for equality condition, and we need to be careful about it.

trade_2019 <- trade |>
filter(year == 2019)

let's see what the data looks like:
head(trade_2019)

A tibble: 6 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

1 ABW Aruba 2019 10396000 1000
2 AFG Afghanistan 2019 49930000 38000
3 AGO Angola 2019 236830000 16733000
4 AIA Anguilla 2019 817000 1000
5 ALA Åland Islands 2019 NA 0
6 ALB Albania 2019 20744000 3357000

Let’s create a new object with the data from only three countries: United States, China,
and Japan. We need to use %in% as a condition for multiple values that we look for in the
dataframe.

29

trade_us_china_japan <- trade |>
filter(country %in% c("United States", "China", "Japan"))

let's see what the data looks like:
head(trade_us_china_japan)

A tibble: 6 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

1 CHN China 1965 NA NA
2 CHN China 1966 NA NA
3 CHN China 1967 NA NA
4 CHN China 1968 NA NA
5 CHN China 1969 NA NA
6 CHN China 1970 NA NA

We can filter the rows for multiple years using the %in% operator as well. Let’s create a new
object with the data from 2015, 2016, 2017, and 2018. : is used to create a sequence of
numbers. 2015:2018 creates a sequence of numbers from 2015 to 2018.

trade_2015_2018 <- trade |>
filter(year %in% 2015:2018)

We can also filter rows based on multiple conditions. Let’s create a new object with the data
from 2015, 2016, 2017, and 2018 using the & operator, which means “and”.

trade_2015_2018_backup <- trade |>
filter(year >= 2015 # year is greater than or equal to 2015

& # and
year <= 2018 # year is less than or equal to 2018
)

Let’s check if trade_2015_2018 and trade_2015_2018_backup are the same.

identical(trade_2015_2018, trade_2015_2018_backup)

[1] TRUE

Now, let’s filter the data for 2015, 2016, 2017, and 2018 for the United States, China, and
Japan, this time using country codes.

30

trade_us_china_japan_2015_2018 <- trade |>
filter(year %in% 2015:2018 # included years are 2015, 2016, 2017, and 2018

& # and
iso3c %in% c("USA", "CHN", "JPN") # included country codes are USA, CHN, and JPN
)

let's see what the data looks like:
head(trade_us_china_japan_2015_2018)

A tibble: 6 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

1 CHN China 2015 137123934000 90250275000
2 CHN China 2016 124432941000 86980135000
3 CHN China 2017 142120000000 97860114000
4 CHN China 2018 162125055000 106488592000
5 JPN Japan 2015 25576507000 45853834000
6 JPN Japan 2016 24355036000 47466592000

Two other operators that we can use for filtering are | and !. | means “or” and ! means “not”.
Let’s create a new object with the data for 2015, 2016, 2017, and 2018 or the export volume
is larger than 100 billion USD.

trade_2015_2018_or_export <- trade |>
filter(year %in% 2015:2018 # included years are 2015, 2016, 2017, and 2018

| #or
export_kosis > 110000000000 # export volume is larger than 110 billion USD
)

Let’s see what else is included that is not in the years 2015, 2016, 2017, and 2018.

trade_2015_2018_or_export |>
filter(!year %in% 2015:2018) # excluded years are 2015, 2016, 2017, and 2018

A tibble: 11 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

1 CHN China 2010 116837833000 71573603000
2 CHN China 2011 134185009000 86432238000
3 CHN China 2012 134322564000 80784595000

31

4 CHN China 2013 145869498000 83052877000
5 CHN China 2014 145287701000 90082226000
6 CHN China 2019 136202533000 107228736000
7 CHN China 2020 132565445000 108884645000
8 CHN China 2021 162912974000 138628127000
9 CHN China 2022 155789389000 154576314000
10 CHN China 2023 124817682000 142857338000
11 USA United States 2023 115696334000 71272030000

5.3 Arranging rows

We can arrange rows based on a column using the arrange() function. Let’s arrange the
data by year in ascending order.

trade <- trade |>
arrange(year)

head(trade)

A tibble: 6 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

1 ABW Aruba 1965 NA NA
2 AFG Afghanistan 1965 NA NA
3 AGO Angola 1965 NA NA
4 AIA Anguilla 1965 NA NA
5 ALA Åland Islands 1965 NA NA
6 ALB Albania 1965 NA NA

We can arrange by year in descending order.

trade <- trade |>
arrange(desc(year))

head(trade)

A tibble: 6 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

32

1 ABW Aruba 2023 21005000 121000
2 AFG Afghanistan 2023 25079000 1045000
3 AGO Angola 2023 474761000 11000
4 AIA Anguilla 2023 96000 10000
5 ALA Åland Islands 2023 15000 0
6 ALB Albania 2023 142311000 11053000

We can arrange alphabetically by country codes in ascending order.

trade <- trade |>
arrange(iso3c)

head(trade)

A tibble: 6 x 5
iso3c country year export_kosis import_kosis
<chr> <chr> <dbl> <dbl> <dbl>

1 ABW Aruba 2023 21005000 121000
2 ABW Aruba 2022 24954000 15000
3 ABW Aruba 2021 11612000 93314000
4 ABW Aruba 2020 3070000 83864000
5 ABW Aruba 2019 10396000 1000
6 ABW Aruba 2018 14807000 2935000

5.4 Mutating columns

We can create new columns or update existing columns using the mutate() function. Let’s
create a new column, trade_kosis, which is the total trade volume of Korea with a country in
a year. The total trade volume is the sum of exports and imports.

trade <- trade |>
mutate(trade_kosis = export_kosis + import_kosis)

head(trade)

A tibble: 6 x 6
iso3c country year export_kosis import_kosis trade_kosis
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 ABW Aruba 2023 21005000 121000 21126000

33

2 ABW Aruba 2022 24954000 15000 24969000
3 ABW Aruba 2021 11612000 93314000 104926000
4 ABW Aruba 2020 3070000 83864000 86934000
5 ABW Aruba 2019 10396000 1000 10397000
6 ABW Aruba 2018 14807000 2935000 17742000

5.5 Grouping and summarizing data

We can group data based on one or more columns using the group_by() function. We can
summarize data based on the groups using the summarize() function. Let’s group the data
by year and summarize the total trade volume of Korea in each year.

We need to be careful about one thing. There are missing values in the data. We need to
ignore them (in other words treat them as zero) when we calculate the total trade volume.
Otherwise, the total trade volume will be NA if there is at least one missing value in the data
for a year. We can use the na.rm = TRUE argument in the sum() function to remove missing
values.

trade_volume <- trade |>
group_by(year) |>
summarize(total_trade_kosis = sum(trade_kosis, na.rm = TRUE)) |>
arrange(desc(total_trade_kosis))

head(trade_volume)

A tibble: 6 x 2
year total_trade_kosis
<dbl> <dbl>

1 2022 1400216998000
2 2023 1270073156000
3 2021 1248778081000
4 2018 1127928070000
5 2014 1092728073000
6 2011 1077938860000

We can also group the data by country. Let’s summarize the total trade volume of Korea with
each country since 1965.

34

trade_country <- trade |>
group_by(country) |>
summarize(total_trade_kosis = sum(trade_kosis, na.rm = TRUE)) |>
arrange(desc(total_trade_kosis))

head(trade_country)

A tibble: 6 x 2
country total_trade_kosis
<chr> <dbl>

1 China 4455699092000
2 United States 3179689314000
3 Japan 2424243884000
4 Vietnam 773845848000
5 Hong Kong SAR China 759431632000
6 Saudi Arabia 753711941000

5.6 Conditional Mutating

We can conditionally mutate columns using the case_when() function. Let’s create a new
column, trade_status, which is “surplus” if the export volume is larger than the import volume,
“deficit” if the import volume is larger than the export volume, and “balanced” if the export
volume is equal to the import volume. If the export or import volume is missing, we will make
the trade status “unknown”. We can use is.na() to check if a value is missing.

trade <- trade |>
mutate(trade_status = case_when(

export_kosis > import_kosis ~ "surplus", # export volume is larger than import volume
export_kosis < import_kosis ~ "deficit", # export volume is less than import volume
export_kosis == import_kosis ~ "balanced", # export volume is equal to import volume
is.na(export_kosis) | is.na(import_kosis) ~ "unknown", # export or import volume is missing
TRUE ~ "everything else" # in this instance, we do not need "TRUE ~" since we cover all `case_when()` options above. But in other cases, you may need it. "TRUE ~" basically helps you assign a new value for every other condition that is not mentioned above.

))

head(trade)

A tibble: 6 x 7
iso3c country year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

35

1 ABW Aruba 2023 21005000 121000 21126000 surplus
2 ABW Aruba 2022 24954000 15000 24969000 surplus
3 ABW Aruba 2021 11612000 93314000 104926000 deficit
4 ABW Aruba 2020 3070000 83864000 86934000 deficit
5 ABW Aruba 2019 10396000 1000 10397000 surplus
6 ABW Aruba 2018 14807000 2935000 17742000 surplus

In this instance, we do not need “TRUE ~” since we cover all case_when() options above. But
in other cases, you may need it. “TRUE ~” basically helps you assign a new value for every
other condition that is not mentioned above.

We can create a table using the table() function for the trade status of Korea since 1965.

table(trade$trade_status)

balanced deficit surplus unknown
143 3134 6567 5444

5.7 Merging datasets

Right now, we only have one dataset. Let’s get another dataset from the WDI package, which
includes World Bank’s World Development Indicators data. Let’s install the package if you do
not have it yet.

install.packages("WDI") # if you haven't installed the WDI package yet, remove the # sign.

library(WDI) # load the WDI package

Let’s get the data for the GDP of all countries since 1965. You can search for indicators
from the World Bank’s World Development Indicators database here or using the WDIsearch
function in the WDI package. For details, you can check out WDI’s documentation using the ?
function or its Github page.

wdi <- WDI(country = "all", # all countries
indicator = c("gdp" = "NY.GDP.MKTP.KD", # GDP at constant 2015 US dollars

"gdp_pc" = "NY.GDP.PCAP.KD"), # GDP per capita at constant 2015 US dollars
start = 1965, # start year
end = 2024, # end year
extra = TRUE, # include extra columns included in the WDI package defaults

36

https://databank.worldbank.org/source/world-development-indicators
https://github.com/vincentarelbundock/WDI

language = "en" # language is English
)

head(wdi)

country iso2c iso3c year status lastupdated gdp gdp_pc
1 Afghanistan AF AFG 1965 2024-09-19 NA NA
2 Afghanistan AF AFG 2003 2024-09-19 7867263256 347.4152
3 Afghanistan AF AFG 1966 2024-09-19 NA NA
4 Afghanistan AF AFG 2005 2024-09-19 8874480196 363.5415
5 Afghanistan AF AFG 1971 2024-09-19 NA NA
6 Afghanistan AF AFG 2002 2024-09-19 7228795919 344.2242

region capital longitude latitude income lending
1 South Asia Kabul 69.1761 34.5228 Low income IDA
2 South Asia Kabul 69.1761 34.5228 Low income IDA
3 South Asia Kabul 69.1761 34.5228 Low income IDA
4 South Asia Kabul 69.1761 34.5228 Low income IDA
5 South Asia Kabul 69.1761 34.5228 Low income IDA
6 South Asia Kabul 69.1761 34.5228 Low income IDA

We wanted extra WDI data, but we don’t need all. Let’s select the ones we need. This time,
let’s exclude the columns we do not need by using the - sign. Then let’s exclude non-country
groups (e.g., “High income”, “Not classified”) by filtering out rows where the iso3c column is
missing. Then let’s arrange the data by country code and year.

wdi <- wdi |>
#select(-iso2c, -status, -lastupdated, -capital, -lending, -longitude, -latitude) |> # exclude these columns
filter(!is.na(iso3c)) |> # exclude the rows that are missing country codes (in other words, we only include the ones that are not (!) missing country codes (iso3c))
arrange(iso3c, year) # arrange the data by country code and year

head(wdi)

country iso2c iso3c year status lastupdated gdp
1 High income XD 1965 2024-09-19 1.214382e+13
2 Low income XM 1965 2024-09-19 NA
3 Lower middle income XN 1965 2024-09-19 5.474380e+11
4 Not classified XY 1965 2024-09-19 NA
5 Upper middle income XT 1965 2024-09-19 1.481616e+12
6 High income XD 1966 2024-09-19 1.281436e+13

gdp_pc region capital longitude latitude income lending
1 12593.9054 <NA> <NA> <NA> <NA> <NA> <NA>

37

2 NA <NA> <NA> <NA> <NA> <NA> <NA>
3 584.5733 <NA> <NA> <NA> <NA> <NA> <NA>
4 NA <NA> <NA> <NA> <NA> <NA> <NA>
5 1171.4299 <NA> <NA> <NA> <NA> <NA> <NA>
6 13154.2957 <NA> <NA> <NA> <NA> <NA> <NA>

This did not work out. Probably these entries are not missing, but instead simply empty! Let’s
check that. Let’s try filtering out empty country codes (instead of missing country codes which
we checked with is.na()).

wdi <- wdi |>
filter(iso3c != "") # exclude the rows that have empty country codes. We check it as an empty character. "!=" means not equal to.

head(wdi)

country iso2c iso3c year status lastupdated gdp gdp_pc
1 Aruba AW ABW 1965 2024-09-19 NA NA
2 Aruba AW ABW 1966 2024-09-19 NA NA
3 Aruba AW ABW 1967 2024-09-19 NA NA
4 Aruba AW ABW 1968 2024-09-19 NA NA
5 Aruba AW ABW 1969 2024-09-19 NA NA
6 Aruba AW ABW 1970 2024-09-19 NA NA

region capital longitude latitude income
1 Latin America & Caribbean Oranjestad -70.0167 12.5167 High income
2 Latin America & Caribbean Oranjestad -70.0167 12.5167 High income
3 Latin America & Caribbean Oranjestad -70.0167 12.5167 High income
4 Latin America & Caribbean Oranjestad -70.0167 12.5167 High income
5 Latin America & Caribbean Oranjestad -70.0167 12.5167 High income
6 Latin America & Caribbean Oranjestad -70.0167 12.5167 High income

lending
1 Not classified
2 Not classified
3 Not classified
4 Not classified
5 Not classified
6 Not classified

Yes, that was it. Instead of NA, those country code columns were empty for those rows. Now
that we successfully filtered out the rows with empty country codes, let’s join Korea’s trade
data with the WDI data. There are different types of joins. I will explain five of them. To make
things easier, I will create smaller datasets for the demonstration. We will have only the data

38

for the United States, China, and Japan in the trade data. We will have only the data for the
United States, Japan and Italy in the WDI data.

trade_df <- trade |>
filter(iso3c %in% c("USA", "CHN", "JPN"))

head(trade_df)

A tibble: 6 x 7
iso3c country year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 CHN China 2023 124817682000 142857338000 267675020000 deficit
2 CHN China 2022 155789389000 154576314000 310365703000 surplus
3 CHN China 2021 162912974000 138628127000 301541101000 surplus
4 CHN China 2020 132565445000 108884645000 241450090000 surplus
5 CHN China 2019 136202533000 107228736000 243431269000 surplus
6 CHN China 2018 162125055000 106488592000 268613647000 surplus

wdi_df <- wdi |>
filter(iso3c %in% c("USA", "JPN", "ITA"))

39

Figure 5.1: Dataframes

5.7.1 inner_join

inner_join returns only the rows that have matching values in both datasets. Let’s join the
trade_df and wdi_df datasets using the iso3c and year columns.

inner_df <- inner_join(trade_df, wdi_df, by = c("iso3c", "year"))

you can also write it like this:

inner_df <- trade_df |> inner_join(wdi_df, by = c("iso3c", "year"), suffix = c("_trade", "_wdi"))

head(inner_df)

A tibble: 6 x 19

40

iso3c country.x year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 JPN Japan 2023 29000616000 47656468000 76657084000 deficit
2 JPN Japan 2022 30606278000 54711795000 85318073000 deficit
3 JPN Japan 2021 30061806000 54642165000 84703971000 deficit
4 JPN Japan 2020 25097651000 46023036000 71120687000 deficit
5 JPN Japan 2019 28420213000 47580853000 76001066000 deficit
6 JPN Japan 2018 30528580000 54603749000 85132329000 deficit
i 12 more variables: country.y <chr>, iso2c <chr>, status <chr>,
lastupdated <chr>, gdp <dbl>, gdp_pc <dbl>, region <chr>, capital <chr>,
longitude <chr>, latitude <chr>, income <chr>, lending <chr>

41

Figure 5.2: inner_join

42

The column names that we will join by are the same in both dataframes (“iso3c” and “year”).
If it was not the same, we could write the code as follows:

inner_df <- inner_join(trade_df, wdi_df, by = c("iso3c" = "iso3c", "year" = "year")) # the first element is from the first dataframe and the second element is from the second dataframe.

If, for example, the country code column name was “country_code” and the year column was
“Year” in trade_df, you would replace the first “iso3c” with “country_code” and the first “year”
with “Year”.

If there are columns with the same name in both dataframes other than the columns you use
to join them, you can use the suffix argument to add a suffix to the column names. For
example, in this case, we have columns named “country” in both dataframes. Since we didn’t
have suffix in the above code, we have two columns “country.x” and “country.y”. If you want
to add suffices, you can do it as follows:

inner_df <- inner_join(trade_df, wdi_df, by = c("iso3c", "year"), suffix = c("_trade", "_wdi"))

head(inner_df)

A tibble: 6 x 19
iso3c country_trade year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 JPN Japan 2023 29000616000 47656468000 76657084000 deficit
2 JPN Japan 2022 30606278000 54711795000 85318073000 deficit
3 JPN Japan 2021 30061806000 54642165000 84703971000 deficit
4 JPN Japan 2020 25097651000 46023036000 71120687000 deficit
5 JPN Japan 2019 28420213000 47580853000 76001066000 deficit
6 JPN Japan 2018 30528580000 54603749000 85132329000 deficit
i 12 more variables: country_wdi <chr>, iso2c <chr>, status <chr>,
lastupdated <chr>, gdp <dbl>, gdp_pc <dbl>, region <chr>, capital <chr>,
longitude <chr>, latitude <chr>, income <chr>, lending <chr>

5.7.2 left_join

left_join returns all the rows from the left dataset and the matched rows from the right
dataset. If there is no match, the result is NA. Let’s join the trade_df and wdi_df datasets
using the iso3c and year columns.

43

Figure 5.3: left_join

44

left_df <- left_join(trade_df, wdi_df, by = c("iso3c", "year"))

head(left_df)

A tibble: 6 x 19
iso3c country.x year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 CHN China 2023 124817682000 142857338000 267675020000 deficit
2 CHN China 2022 155789389000 154576314000 310365703000 surplus
3 CHN China 2021 162912974000 138628127000 301541101000 surplus
4 CHN China 2020 132565445000 108884645000 241450090000 surplus
5 CHN China 2019 136202533000 107228736000 243431269000 surplus
6 CHN China 2018 162125055000 106488592000 268613647000 surplus
i 12 more variables: country.y <chr>, iso2c <chr>, status <chr>,
lastupdated <chr>, gdp <dbl>, gdp_pc <dbl>, region <chr>, capital <chr>,
longitude <chr>, latitude <chr>, income <chr>, lending <chr>

5.7.3 right_join

right_join returns all the rows from the right dataset and the matched rows from the left
dataset. If there is no match, the result is NA. Let’s join the trade_df and wdi_df datasets
using the iso3c and year columns.

45

Figure 5.4: right_join

46

right_df <- right_join(trade_df, wdi_df, by = c("iso3c", "year"), suffix = c("_trade", "_wdi"))

head(right_df)

A tibble: 6 x 19
iso3c country_trade year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 JPN Japan 2023 29000616000 47656468000 76657084000 deficit
2 JPN Japan 2022 30606278000 54711795000 85318073000 deficit
3 JPN Japan 2021 30061806000 54642165000 84703971000 deficit
4 JPN Japan 2020 25097651000 46023036000 71120687000 deficit
5 JPN Japan 2019 28420213000 47580853000 76001066000 deficit
6 JPN Japan 2018 30528580000 54603749000 85132329000 deficit
i 12 more variables: country_wdi <chr>, iso2c <chr>, status <chr>,
lastupdated <chr>, gdp <dbl>, gdp_pc <dbl>, region <chr>, capital <chr>,
longitude <chr>, latitude <chr>, income <chr>, lending <chr>

5.7.4 full_join

full_join returns all the rows from both datasets. If there is no match, the result is NA. Let’s
join the trade_df and wdi_df datasets using the iso3c and year columns.

47

Figure 5.5: full_join

48

full_df <- full_join(trade_df, wdi_df, by = c("iso3c", "year"), suffix = c("_trade", "_wdi"))

head(full_df)

A tibble: 6 x 19
iso3c country_trade year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 CHN China 2023 124817682000 142857338000 267675020000 deficit
2 CHN China 2022 155789389000 154576314000 310365703000 surplus
3 CHN China 2021 162912974000 138628127000 301541101000 surplus
4 CHN China 2020 132565445000 108884645000 241450090000 surplus
5 CHN China 2019 136202533000 107228736000 243431269000 surplus
6 CHN China 2018 162125055000 106488592000 268613647000 surplus
i 12 more variables: country_wdi <chr>, iso2c <chr>, status <chr>,
lastupdated <chr>, gdp <dbl>, gdp_pc <dbl>, region <chr>, capital <chr>,
longitude <chr>, latitude <chr>, income <chr>, lending <chr>

5.7.5 anti_join

anti_join returns all the rows from the left dataset that do not have a match in the right
dataset. Let’s join the trade_df and wdi_df datasets using the iso3c and year columns.

49

Figure 5.6: anti_join

50

anti_df <- anti_join(trade_df, wdi_df, by = c("iso3c", "year"))

head(anti_df)

A tibble: 6 x 7
iso3c country year export_kosis import_kosis trade_kosis trade_status
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 CHN China 2023 124817682000 142857338000 267675020000 deficit
2 CHN China 2022 155789389000 154576314000 310365703000 surplus
3 CHN China 2021 162912974000 138628127000 301541101000 surplus
4 CHN China 2020 132565445000 108884645000 241450090000 surplus
5 CHN China 2019 136202533000 107228736000 243431269000 surplus
6 CHN China 2018 162125055000 106488592000 268613647000 surplus

5.8 A Note on Country Codes

It is often easier to work with standard country codes than country names when we work with
multiple datasets. There are a few widely used standard country codes. Above, we used the
ISO 3166-1 alpha-3 country codes. There are other commonly used country codes such as
Correlates of War (COW) country codes, Varieties of Democracy (V-Dem) country codes, and
more.

We can convert country names to country codes using the countrycode package. Let’s install
the package if you do not have it yet.

install.packages("countrycode") # if you haven't installed the countrycode package yet, remove the # sign.

library(countrycode) # load the countrycode package

Let’s convert the country names in the trade_df dataset to Correlates of War country codes.
You can find the countrycode documentantion on its Github page or by using the ? function.

?countrycode

trade_df <- trade_df |>
mutate(cown = countrycode(country, origin = "country.name", destination = "cown")) # convert country names to Correlates of War numeric country codes (cown)

51

https://github.com/vincentarelbundock/countrycode

5.9 A Note on Working with Korean Country Names1

In my research, I often work with country-year data from Korean sources, including data on
diplomatic visits, trade, aid and so on. One of the fundamental difficulties I have had is the
lack of universal country codes across different datasets. Further complicating matters is
the inconsistency of country names in these datasets. For example, Democratic Republic of
the Congo has five different spellings across different official sources that I could find: 콩고
민주공화국, 자이르, 콩고민주공화국, 콩고민주공화국, 콩고민주공화국(DR콩고).

To address this issue, I have created a function in my kdiplo package that converts Korean
country names into ISO 3166-1 alpha-3 (iso3c) country codes. This function, iso3c_kr, is
designed to assign universal iso3c country codes to Korean-language country names that will
make it easier to join different kinds of data.

One still needs to check if the output is correct, especially for countries that have gone through
political transitions such as Germany, Yugoslavia, Russia, Vietnam, Yemen and so on.

Sometimes the Korean government sources have overlapping data for Yugoslavia and Serbia,
for example. In such cases, one needs to check the data and make sure that the data is
correct.

For example, the following is sample Korean trade data from Korean Statistical Information
Service (KOSIS):

install.packages("readxl") # if you haven't installed the readxl package yet, remove the # sign.

library(readxl) # load the readxl package

let's read the xlsx data

kosis_trade <- read_xlsx("data/kosis_trade_240330.xlsx")

let's take a look at the data

install.packages("gt") # if you haven't installed the gt package yet, remove the # sign.

let's take a look at some of the data

remember, [row, column] format can be used in R for subsetting dataframes. So, we can look at rows 533 to 538 and columns 1 and 57 to 62.

kosis_trade[533:538,c(1,57:62)] |> gt::gt()

1This subsection is adapted from the vignette of the iso3c_kr function in the kdiplo package.

52

https://kosis.kr/statHtml/statHtml.do?orgId=360&tblId=DT_1R11006_FRM101&conn_path=I3
https://kosis.kr/statHtml/statHtml.do?orgId=360&tblId=DT_1R11006_FRM101&conn_path=I3
https://kdiplo.com/articles/iso3c_kr-vignette

국가별 2018 년 2019 년 2020 년 2021 년 2022 년 2023 년
잠비아 26241 16087 17619 28356 14068 15459
잠비아 108344 54542 15164 100606 82198 53867
자이르 NA NA NA NA NA NA
자이르 618 8 113 4 NA NA
짐바브웨 25964 14088 15514 20404 16083 19563
짐바브웨 4909 13098 11377 9627 10415 20862

you can use the gt package to create a table.
you can use "::" to access the functions in the package without loading the package.

And, the following is sample Korean aid data from Korea’s ODA portal:

aid <- read_xlsx("data/korea_total_aid_2019_230709.xlsx")

aid <- aid |> select(1:5) # we only need the first five columns

aid <- aid |> set_names(c("country_kr", "sector", "no_of_projects", "aid_usd", "aid_krw"))

This sample data is only 2019; so we will add the year column, and assign 2019 to all rows.

aid$year <- 2019

let's take a look at some of the data
aid[c(50, 150, 250, 350, 450),] |> gt::gt()

country_kr sector no_of_projects aid_usd aid_krw year
베트남 통신정책, 계획및행정(voluntary code) 2 232334 270736486 2019
캄보디아 11321 1 85815 99999361 2019
미얀마 사회보호/보장 1 103460 120560903 2019
라오스 비정규농업훈련 1 107958 125802378 2019
몽골 의료서비스 5 511824 596423389 2019

5.9.1 Converting wide data to long format

Wide format is quite common in official Korean data sources. Trade data is in wide format.
Before using the iso3c_kr function, let’s first transform the trade data into a long (country-

53

https://stats.odakorea.go.kr/portal/odakorea/detail

year) format to make it in the same format as the aid data. This will make joining the two
datasets more feasible.

To convert the trade data into a long format, we will use the pivot_longer() function from
the tidyr package.

we will divide the trade data into export and import data

export <- kosis_trade

import <- kosis_trade

In pivot_longer(), we need to specify the columns that we want to pivot. In this case, we
want to pivot columns 4 to 62, which are years. We also need to specify the names of the
columns that will be created. In this case, we will create a column called year and a column
called export_kosis for the export data. We will create a column called year and a column
called import_kosis for the import data.

export_long <- export |>
pivot_longer(4:62, names_to = "year", values_to = "export_kosis") # we will pivot the data from wide to long format

We can rename the columns using set_names function in rlang package, which is also a
member of the tidyverse family, to make them more informative.

export_long <- export_long |>
set_names(c("country_kr", "type", "unit", "year", "export_kosis"))

We can filter the data for only export data using the filter() function. We can also convert
the export data from thousands of dollars to dollars by multiplying the export_kosis column
by 1000. We can also convert the year column to numeric using the parse_number() function
from the readr package, which is also a member of the tidyverse family.

export_long <- export_long |>
filter(type == "���[���]") |> # we only need the export data which has the column name in Korean as "���[���]"
mutate(export_kosis = parse_number(export_kosis) * 1000, # we convert the export data from thousands of dollars to dollars; sometimes there are commas that make the data character instead of numeric. So we use parse_number() function from the readr package to convert character to numeric data.

year = parse_number(year)) |> # we convert the year column to numeric using parse_number() function from the readr package
select(-type, -unit) # we do not need the type and unit columns

We repeat the same steps for the import data.

54

import_long <- import |>
pivot_longer(4:62, names_to = "year", values_to = "import_kosis")

import_long <- import_long |>
set_names(c("country_kr", "type", "unit", "year", "import_kosis"))

import_long <- import_long |>
filter(type == "���[���]") |>
mutate(import_kosis = parse_number(import_kosis) * 1000,

year = parse_number(year)) |>
select(-type, -unit)

Now, we can join the export and import data using the left_join() function.

trade_long <- export_long |>
left_join(import_long, by = c("country_kr", "year"))

Here, we get a warning message that there are rows that have the same country name and
year in both the export and import data. It is because, KOSIS reported trade with Palestine in
two separate entries (probably, West Bank and Gaza are recorded separately), but assigning
both the same name “팔레스타인해방기구”. We will ignore this warning for now.

5.9.2 iso3c_kr function to convert Korean country names to iso3c country codes

Using the iso3c_kr function, we can simply convert Korean country names into iso3c country
codes. For example, the following is the output of the iso3c_kr function for the Korean trade
data:

trade_long <- iso3c_kr(trade_long, "country_kr") #you copy paste the column name that has the Korean country names.

trade_long[c(50, 150, 250, 350, 450, 550), c(1,5, 2:4)] |> gt::gt()

country_kr iso3c year export_kosis import_kosis
계 NA 2014 572664607000 525514506000
아랍에미리트연합 ARE 1996 1377933000 2259205000
앤티가바부다 ATG 1978 NA NA
앵귈라 AIA 2019 817000 1000
아르메니아 ARM 2001 1255000 43000

55

앙골라 AGO 1983 235000 NA

We see that in this example, “계” (gyae) did not get any iso3c country code. This is because
the iso3c_kr function could not find the iso3c country code for this entry. This is because, it
is not a country name. “계” means total. It is best to check the data to see which entries did
not get an iso3c code.

missing_iso3c <- trade_long |>
filter(is.na(iso3c)) |> # we only need the rows that do not have iso3c country codes
pull(country_kr) |> # pull() function is used to extract a column as a vector
unique() # we need each Korean country name only once to see which ones are missing rather than having it for all years.

missing_iso3c

[1] "�" "������" "��" "���"

They mean “total”, “IMF”, “other”, and “other countries” in Korean. In other words, we are not
missing any countries, which is good.

Now let’s convert the Korean country names in the aid data into iso3c country codes:

aid <- iso3c_kr(aid, "country_kr") #you copy paste the column name that has the Korean country names.

aid[c(50, 150, 250, 350, 450, 550),c(1, 6, 2:5)] |> gt::gt()

country_kr year sector no_of_projects aid_usd aid_krw
베트남 2019 통신정책, 계획및행정(voluntary code) 2 232334 270736486
캄보디아 2019 11321 1 85815 99999361
미얀마 2019 사회보호/보장 1 103460 120560903
라오스 2019 비정규농업훈련 1 107958 125802378
몽골 2019 의료서비스 5 511824 596423389
필리핀 2019 농업용수자원 2 0 0

Once you know the iso3c country codes, you can get the English country names, or other
country codes (such as Correlates of War country codes) using the countrycode package, for
example.

56

trade_long <- trade_long |>
mutate(country_name = countrycode::countrycode(iso3c, origin = "iso3c", destination = "country.name"))

trade_long[c(50, 150, 250, 350, 450, 550),c(1, 5, 6, 2:4)] |> gt::gt()

country_kr iso3c country_name year export_kosis import_kosis
계 NA NA 2014 572664607000 525514506000
아랍에미리트연합 ARE United Arab Emirates 1996 1377933000 2259205000
앤티가바부다 ATG Antigua & Barbuda 1978 NA NA
앵귈라 AIA Anguilla 2019 817000 1000
아르메니아 ARM Armenia 2001 1255000 43000
앙골라 AGO Angola 1983 235000 NA

More importantly, iso3c_kr function allows users to be able to join different datasets that have
Korean country names. For example, one can join the trade data with the aid data using the
iso3c country codes. In this example, I will join the trade data with the aid data using the iso3c
country codes.

trade_aid <- trade_long |>
left_join(aid, by = c("iso3c", "year"), suffix = c("_trade", "_aid"))

trade_aid |>
filter(year == 2019 & !is.na(iso3c)) |> # just as a sample, we only need the data for 2019 and we exclude the rows that do not have iso3c country codes
slice(c(30, 130, 230, 330, 430, 530)) |> # just as a sample, let's only look at the rows 30, 130, 230, 330, 430, and 530
select(c(iso3c, country_kr_trade, country_kr_aid, year, export_kosis, import_kosis, aid_usd)) |> # just as a sample, let's only look at the columns that we are interested in
gt::gt()

iso3c country_kr_trade country_kr_aid year export_kosis import_kosis aid_usd
AFG 아프가니스탄 아프가니스탄 2019 49930000 38000 6081
BGD 방글라데시 방글라데시 2019 1282342000 404703000 746593
BOL 볼리비아 볼리비아 2019 30434000 450576000 535262
COD 콩고민주공화국 콩고민주공화국(DR콩고) 2019 37083000 411274000 0
CHN 중국 중국 2019 136202533000 107228736000 0
DOM 도미니카공화국 도미니카공화국 2019 252420000 88516000 25792

Voilà! Now we have a dataset that has both trade and aid data, both of which originally did not
have consistent country names or country codes. If we only used country_kr column to join
the two datasets, we would have failed to merge all the data, such as “콩고 민주공화국” and

57

“콩고민주공화국(DR콩고)”, both of which are Democratic Republic of the Congo; or “도미니카
공화국” and “도미니카공화국” (Dominican Republic) which merelt have a space difference
between the words. But with the iso3c_kr function, we were able to merge the two datasets
successfully.

5.10 Working with dates

To be added

58

6 Data Visualization: Tables

59

7 Data Visualization: Plots

[A Very Early Draft]

In this chapter, we will learn data visualization using the ggplot2 package, which is part of
the tidyverse family. We will learn how to create scatter plots, line plots, bar plots, and
histograms. We will also learn how to customize the appearance of these plots. Since this is
a beginner’s guide, we will only cover the very basics of data visualization.

For more advanced topics, please refer to the official documentation of the ggplot2 package.
You can also check out the cheat sheet for ggplot2 here. You can find other R cheat sheets
here.

Before we begin, I would like to emphasize that learning how to create plots is important, but
learning which plot to use when is equally important. I am not covering the latter here, but
there are some great books and resources available that can help you with that, including

ggplot2 (3e)

Data Visualization: A Practical Introduction

Modern Data Visualization with R

Visual Vocabulary

The R Graph Gallery

Dataviz Project

Friends Don’t Let Friends Make Bad Graphs

Let’s get started by loading the tidyverse package, which automatically loads the ggplot2
package.

library(tidyverse) # Load the tidyverse package

install.packages("devtools") # if you haven't installed the devtools package yet, remove the # sign.

devtools::install_github("kjayhan/kdiplo") # if you haven't installed the kdiplo package yet, remove the # sign.

library(kdiplo) # Load the kdiplo package

60

https://ggplot2.tidyverse.org/
https://rstudio.github.io/cheatsheets/html/data-visualization.html
https://rstudio.github.io/cheatsheets/
https://ggplot2-book.org/
https://socviz.co/
https://rkabacoff.github.io/datavis/
https://ft-interactive.github.io/visual-vocabulary/
https://www.r-graph-gallery.com/
https://datavizproject.com/
https://github.com/cxli233/FriendsDontLetFriends

We will work with the Korean trade data, and some additional data, which we have already
cleaned and prepared in the previous chapter. I copy paste the same code here for your
convenience.

trade <- kdiplo::trade_data |> # making sure that we get trade_data from the kdiplo package, and not from the environment.
select(iso3c, country, year, export_kosis, import_kosis) |> # select columns iso3c, country, year, export_kosis, and import_kosis
filter(year > 1964) |> # filter rows where year is greater than 1964
mutate(trade_kosis = export_kosis + import_kosis) # create a new column trade_kosis for Korea's trade volume, which is the sum of export_kosis and import_kosis

install.packages("WDI") # if you haven't installed the WDI package yet, remove the # sign.

library(WDI) # load the WDI package

wdi <- WDI(country = "all", # all countries
indicator = c("gdp" = "NY.GDP.MKTP.KD", # GDP at constant 2015 US dollars

"gdp_pc" = "NY.GDP.PCAP.KD"), # GDP per capita at constant 2015 US dollars
start = 1965, # start year
end = 2024, # end year
extra = TRUE, # include extra columns included in the WDI package defaults
language = "en" # language is English
) |>

select(-iso2c, -status, -lastupdated, -capital, -lending, -longitude, -latitude, -country) |> # exclude these columns
filter(iso3c != "" | is.na(iso3c)) # exclude the rows that are missing country codes

let's join these two datasets.

df <- trade |>
inner_join(wdi, by = c("iso3c", "year")) # join the trade and wdi datasets by iso3c and year; let's keep only the rows that have matching iso3c and year values in both datasets.

head(df)

A tibble: 6 x 10
iso3c country year export_kosis import_kosis trade_kosis gdp gdp_pc region
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>

1 ABW Aruba 1965 NA NA NA NA NA Latin ~
2 ABW Aruba 1966 NA NA NA NA NA Latin ~
3 ABW Aruba 1967 NA NA NA NA NA Latin ~
4 ABW Aruba 1968 NA NA NA NA NA Latin ~
5 ABW Aruba 1969 NA NA NA NA NA Latin ~
6 ABW Aruba 1970 NA NA NA NA NA Latin ~
i 1 more variable: income <chr>

61

wrangling.qmd

7.1 Histograms

A histogram is a graphical representation of the distribution of a continuous variable. It is a
type of bar plot that shows the frequency of values in a dataset. The bars in a histogram are
adjacent to each other, and the height of each bar represents the frequency of values in a
specific range.

To create a histogram, we use the geom_histogram() function in ggplot2. Let’s create a
histogram of Korea’s trade volume.

In ggplot2, we first specify the dataset and the aesthetic mappings using the ggplot() function.
In geom_histogram(), we specify only the x-axis variable using the aes() function. We then
add layers to the plot using the + operator. We should be careful not to use a pipe (|> or %>%)
instead of + operator within ggplot() calls. In this case, we specify the x-axis variable using
the aes() function and add the geom_histogram() layer to create the histogram.

Create a histogram of Korea's trade volume
df |>
filter(year == 2023) |> # filter rows to include only the year 2023
ggplot(aes(x = trade_kosis)) + # specify the x-axis variable
geom_histogram() # create a histogram

0

50

100

150

0e+00 1e+11 2e+11
trade_kosis

co
un

t

This is not very useful as a histogram because of the skewed distribution of the trade volume.
We can improve the appearance of the histogram by using log transformation.

62

Create a histogram of Korea's trade volume with log transformation and assign it to an object

hist1 <- df |>
filter(year == 2023) |> # filter rows to include only the year 2023
ggplot(aes(x = log(trade_kosis))) + # specify the x-axis variable with log transformation
geom_histogram(# you can specify the number of bins using the bins argument, e.g., bins = 20

fill = "#2166ac") # create a histogram with blue bars; you can change the color by specifying a different color code, or you can simply use the default color by not specifying the fill argument.

hist1 # print the histogram

0

5

10

15

20

15 20 25
log(trade_kosis)

co
un

t

This is more informative than the previous histogram. This time let’s add a vertical line to the
histogram to show the mean and median of trade volume. We need to remember to use na.rm
= TRUE in the mean() and median() functions to remove missing values from the calculation.
Otherwise, the functions will return NA.

We can draw these vertical lines by adding the geom_vline() layer to the plot. We can also
change the color of the line using the color arguments in the geom_vline() function.

since we are going to use the same histogram object, we can add layers to it. Let's call it hist2.

hist2 <- hist1 +
geom_vline(aes(xintercept = log(mean(trade_kosis, na.rm = TRUE))), color = "#b2182b", linetype = "dashed") + # add a vertical line for the mean of trade volume
geom_vline(aes(xintercept = log(median(trade_kosis, na.rm = TRUE))), color = "#fddbc7", linetype = "dotted") # add a vertical line for the median of trade volume

63

hist2 # print the histogram

0

5

10

15

20

15 20 25
log(trade_kosis)

co
un

t

The dashed line represents the mean of the trade volume, and the dotted line represents
the median of the trade volume. The mean is greater than the median, which indicates that
the distribution is right-skewed, with most values concentrated around the median, which is
17.9179225 (formula = log(median(df$trade_kosis, na.rm = TRUE))), which corresponds
to 6.0486 × 107 (formula = exp(log(median(df$trade_kosis, na.rm = TRUE)))) in the
original scale. exp() is the inverse of log().

We can add a title, x-axis label, and y-axis label to the histogram using the labs() function.
We can change the breaks and labels of the x-axis using the scale_x_continuous() function.
We can also add annotations to the plot using the annotate() function.

Add a title, x-axis label, and y-axis label to the histogram

hist3 <- hist2 +
labs(title = "Histogram of Korea's Trade Volume in 2023", x = "Log of Trade Volume", y = "Frequency") + # add a title, x-axis label, and y-axis label
scale_x_continuous(breaks = seq(0, 30, 2)) + # change the breaks of the x-axis
annotate("text", x = log(median(df$trade_kosis, na.rm = TRUE)), y = 22, label = "Median", color = "black", size = 3) + # add an annotation for the median
annotate("text", x = log(mean(df$trade_kosis, na.rm = TRUE)), y = 22, label = "Mean", color = "black", size = 3) # add an annotation for the mean

hist3 # print the histogram

64

Median Mean

0

5

10

15

20

12 14 16 18 20 22 24 26
Log of Trade Volume

F
re

qu
en

cy
Histogram of Korea's Trade Volume in 2023

This histogram is now more informative and visually appealing. We can also change the
theme of the plot using the theme_minimal() function. For other themes, you can check out
ggtthemes package as well as many others out there.

Change the theme of the histogram

hist3 +
theme_minimal() # change the theme of the plot to minimal; you can also use other themes such as theme_light(), theme_dark(), and theme_bw().

65

Median Mean

0

5

10

15

20

12 14 16 18 20 22 24 26
Log of Trade Volume

F
re

qu
en

cy
Histogram of Korea's Trade Volume in 2023

theme_light() # change the theme of the plot to light
theme_dark() # change the theme of the plot to dark
theme_bw() # change the theme of the plot to black and white

7.2 Bar Plots

A bar plot is a graphical representation of the distribution of a categorical variable. It is a type
of plot that shows the frequency of categories in a dataset. The bars in a bar plot are separated
from each other, and the height of each bar represents the frequency of categories.

To create a bar plot, we use the geom_bar() function in ggplot2. Let’s create a bar plot of
Korea’s trade volume by year.

Create a bar plot of Korea's trade volume by year

bar1 <- df |>
ggplot(aes(x = year, y = trade_kosis)) + # specify the x-axis and y-axis variables
geom_col(fill = "#2166ac") # create a bar plot with the actual values of trade volume

geom_col() is an alias for geom_bar(stat = "identity"), which is used when the y-axis variable represents the actual values of the data, not the frequency of the data.

bar1 # print the bar plot

66

0e+00

5e+11

1e+12

1980 2000 2020
year

tr
ad

e_
ko

si
s

Let’s customize the appearance by adding a title, x-axis label, and y-axis label, and changing
the theme of the plot, and changing the scale of the x-axis.

Customize the appearance of the bar plot

bar2 <- bar1 +
labs(title = "Korea's Trade Volume by Year", x = "Year", y = "Trade Volume") + # add a title, x-axis label, and y-axis label
scale_x_continuous(breaks = seq(1965, 2023, 5)) + # change the breaks of the x-axis
theme_minimal() + # change the theme of the plot to minimal. Be careful here, if this theme_minimal() is the last layer, another change to theme which we make in the next line will not be applied.
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # change the angle and justification of the x-axis text

bar2 # print the bar plot

67

0e+00

5e+11

1e+12

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

Year

Tr
ad

e
V

ol
um

e
Korea's Trade Volume by Year

This bar plot is now more informative and visually appealing.

7.3 Line Plots

A line plot is a graphical representation of the relationship between two continuous variables.
It is a type of plot that shows the trend of a variable over time or another continuous variable.
The lines in a line plot are connected, and the slope of each line represents the relationship
between the variables.

To create a line plot, we use the geom_line() function in ggplot2. Let’s create a line plot of
Korea’s total exports and total imports by year. Let’s first group the data by year and calculate
the total exports and total imports for each year.

Group the data by year and calculate the total exports and total imports for each year

df_year <- df |>
group_by(year) |> # group the data by year
summarise(total_exports = sum(export_kosis, na.rm = TRUE),

total_imports = sum(import_kosis, na.rm = TRUE)) # calculate the total exports and total imports for each year

Now let’s put imports and exports volume amounts into the same column, using the
pivot_longer() function, which we learned in the previous chapter.

68

wrangling.qmd

Put imports and exports volume amounts into the same column

df_year <- df_year |>
pivot_longer(cols = c(total_exports, total_imports), names_to = "type", values_to = "volume") # put imports and exports volume amounts into the same column

Create a line plot of Korea's exports and imports by year

line1 <- df_year |>
ggplot(aes(x = year, y = volume, color = type)) + # specify the x-axis variable
geom_line() + # create a line plot for exports
scale_color_manual(values = c("#2166ac", "#b2182b")) + # change the colors of the lines
scale_x_continuous(breaks = seq(1965, 2023, 5)) + # change the breaks of the x-axis
labs(title = "Korea's Import and Export Volume by Year", x = "Year", y = "Import/ Export Volume", color = "Trade Type") + # add a title, x-axis label, and y-axis label +
theme_minimal() + # change the theme of the plot to minimal. Be careful here, if this theme_minimal() is the last layer, another change to theme which we make in the next line will not be applied.
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # change the angle and justification of the x-axis text

line1 # print the line plot

0e+00

2e+11

4e+11

6e+11

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

Year

Im
po

rt
/ E

xp
or

t V
ol

um
e

Trade Type

total_exports

total_imports

Korea's Import and Export Volume by Year

This line plot shows the trend of Korea’s total exports and total imports over time. The blue
line represents total exports, and the red line represents total imports.

69

7.4 Scatter Plots

A scatter plot is a graphical representation of the relationship between two continuous vari-
ables. It is a type of plot that shows the correlation between two variables. The points in a
scatter plot are not connected, and the position of each point represents the values of the
variables.

To create a scatter plot, we use the geom_point() function in ggplot2. Let’s create a scatter
plot of logged GDP of Korea’s trade partner and the bilateral logged trade volume. We take
logs because of skewed distributions of both data.

Create a scatter plot of partner country's logged GDP and bilateral logged trade volume

scatter1 <- df |>
ggplot(aes(x = log(gdp), y = log(trade_kosis))) + # specify the x-axis and y-axis variables
geom_point(color = "#2166ac") + # create a scatter plot with blue points
labs(title = "Logged GDP of the Partner Country and Logged Trade Volume", x = "Logged GDP", y = "Logged Trade Volume") + # add a title, x-axis label, and y-axis label
theme_minimal() # change the theme of the plot to minimal

scatter1 # print the scatter plot

10

15

20

25

16 20 24 28
Logged GDP

Lo
gg

ed
 T

ra
de

 V
ol

um
e

Logged GDP of the Partner Country and Logged Trade Volume

To this, we can add a linear regression line to show the relationship between the variables.
We can do this by adding the geom_smooth() layer to the plot. We can also change the color
of the line using the color argument in the geom_smooth() function.

70

Add a linear regression line to the scatter plot

scatter2 <- scatter1 +
geom_smooth(method = "lm", se = FALSE, color = "#b2182b") # add a linear regression line without confidence intervals

scatter2 # print the scatter plot

10

15

20

25

16 20 24 28
Logged GDP

Lo
gg

ed
 T

ra
de

 V
ol

um
e

Logged GDP of the Partner Country and Logged Trade Volume

This scatter plot shows the relationship between the logged GDP of Korea’s trade partner and
the bilateral logged trade volume. The linear regression line indicates a positive relationship
between the variables, as expected.

Now let’s differentiate the points by the income level of the partner country. We can do this
by adding the color argument in the aes() function and specifying the income variable.

First, let’s see the categories and frequency of each category in the income variable.

Check the categories in the income variable

table(df$income) # count the frequency of each category in the income variable

High income Low income Lower middle income Not classified
4543 1652 3127 59

Upper middle income

71

3134

To make the visual neat, we can group the income levels into three categories: low, middle,
and high. We can do this by using the case_when() function in the mutate() function.

Group the income levels into three categories: low, high, and not classified

df <- df |>
mutate(income2 = case_when(

income %in% c("Low income") ~ "Low income", # if the income level is "Low income", assign it to the Low category
income %in% c("Lower middle income ", "Upper middle income") ~ "Middle income", # if the income level is "Lower middle income " or "Upper middle income", assign it to the Middle income category
income %in% c("High income") ~ "High income", # if the income level is "High income", assign it to the High income category
TRUE ~ "Not Classified" # otherwise, assign it to the Not Classified category

))

Differentiate the points by the income level of the partner country

scatter3 <- df |>
filter(income2 != "Not Classified" & year == 2023) |> # filter rows to exclude the Not Classified category; for now I also filter to year 2023 to make the regression lines more visible
ggplot(aes(x = log(gdp), y = log(trade_kosis), color = income2)) + # specify the x-axis and y-axis variables and differentiate the points by the income level
geom_point() + # create a scatter plot
labs(title = "Logged GDP of the Partner Country and Logged Trade Volume by Income Level", x = "Logged GDP", y = "Logged Trade Volume", color = "Income Level") + # add a title, x-axis label, y-axis label, and color legend
geom_smooth(method = "lm", se = FALSE) + # add a linear regression line without confidence intervals
scale_color_manual(values = c("#2166ac", "#f4a582", "#b2182b")) + # change the colors of the points
theme_minimal() # change the theme of the plot to minimal

scatter3 # print the scatter plot

72

12

16

20

24

20 24 28
Logged GDP

Lo
gg

ed
 T

ra
de

 V
ol

um
e

Income Level

High income

Low income

Middle income

Logged GDP of the Partner Country and Logged Trade Volume by Income Level

73

8 Data Visualization: Maps

74

9 Korean Text Analysis

In this chapter, we will learn how to analyze Korean text data using R. We will use the
tidyverse, pdftools, and bitNLP packages to extract text from a pdf file and analyze it. We
will use Korea’s 2022 Diplomatic White Paper (외교백서, waegyo baekseo) as an example
text.

We will learn the following things in order:

• Extracting text and tables from a PDF file.
• Extracting text and tables from the internet.
• Ensuring accurate spacing between words in Korean text.
• Analyzing morphemes in Korean text.
• Analyzing word frequency in Korean text.
• Analyzing the noun word network in Korean text.
• Analyzing the sentiment of Korean text.
• Topic modeling of Korean text.

9.1 Libraries

First, we need to install bitNLP which requires us to install the MeCab library for Korean text
analysis. Uncomment the following lines in your first usage. After the first usage, you can
comment out the installation lines.

install.packages("remotes")
remotes::install_github("bit2r/bitNLP")
library(bitNLP)
install_mecab_ko()
install.packages("RcppMeCab")

Now let’s load the necessary libraries. If you are missing any of the following packages, you
can install them by uncommenting the install.packages lines.

75

https://www.tidyverse.org/
https://r2bit.com/bitNLP/
https://taku910.github.io/mecab/

install.packages("tidyverse")
install.packages("pdftools")
install.packages("rvest")
install.packages("tidytext")
install.packages("igraph")
install.packages("ggraph")
install.packages("extrafont")
library(tidyverse)
library(pdftools)
library(rvest)
library(tidytext)
library(igraph)
library(ggraph)
library(extrafont)

9.2 Loading pdf Data

Let’s analyze the text from Korea’s 2024 Public Diplomacy Comprehensive Implementation
Plan (2024년 공공외교 종합시행계획 개요) which is available as a pdf file on the Ministry of
Foreign Affairs’ (MOFA) website1.

If the pdf file is in your local directory, you can load it using the following code.

Load PDF
pdf_path <- "data/2024����������.pdf"

Alternatively, you can download the pdf file from theMOFA’s website using the download.file
function. You can then load the pdf file using the pdf_path variable. Working with the online
pdf file and the local pdf file is the same. We can do either. For now, I will use the local pdf file
since the MOFA might change the url for the pdf later. That is why I commented the download
code. You can comment the earlier code for the local pdf file and uncomment the following
code for the online pdf file.

Download PDF
#file <- tempfile()

This url works for now. But MOFA might change it later. You can replace the link with any other link you want to download.

1Please bear in mind that MOFA website’s url might change later, making this hyperlink broken. In that case,
you can download the pdf file on the MOFA’s website by searching for “2024년 공공외교종합시행계획개요”.

76

https://www.mofa.go.kr/cntntsDown.do?path=www&physic=2024%EB%85%84%EB%8F%84_%EA%B3%B5%EA%B3%B5%EC%99%B8%EA%B5%90_%EC%A2%85%ED%95%A9%EC%8B%9C%ED%96%89%EA%B3%84%ED%9A%8D.pdf&real=2024%EB%85%84%EB%8F%84_%EA%B3%B5%EA%B3%B5%EC%99%B8%EA%B5%90_%EC%A2%85%ED%95%A9%EC%8B%9C%ED%96%89%EA%B3%84%ED%9A%8D.pdf
https://henrikbengtsson.github.io/R.utils/reference/downloadFile.character.html

#url <- "https://www.mofa.go.kr/cntntsDown.do?path=www&physic=2024%EB%85%84%EB%8F%84_%EA%B3%B5%EA%B3%B5%EC%99%B8%EA%B5%90_%EC%A2%85%ED%95%A9%EC%8B%9C%ED%96%89%EA%B3%84%ED%9A%8D.pdf&real=2024%EB%85%84%EB%8F%84_%EA%B3%B5%EA%B3%B5%EC%99%B8%EA%B5%90_%EC%A2%85%ED%95%A9%EC%8B%9C%ED%96%89%EA%B3%84%ED%9A%8D.pdf"

download.file(url, pdf_path, headers = c("User-Agent" = "My Custom User Agent"))

Now let’s extract the text from the pdf file using the pdf_text function from the pdftools
package.

Extract text
pdf_text_all <- pdf_text(pdf_path)

Now, pdf_text_all is a list of character vectors, where each element corresponds to a page
in the pdf file. For example, we can look at the 4th page of the pdf file in the following way.

Let's look at the 4th page
pdf_text_all[4]

[1] "�� ��� ���� � ��\n[������]\n ‘24� ‘23� ‘24� �� ‘23� ��\n ���\n ��� ��� (���) (���)\n 1 ��� 16 16 194,996 94,963\n 2 ��������� 6 6 32,852 40,283\n 3 ��� 73 63 40,215 39,419\n3-1 �������� 37 41 42,514 44,664\n 4 ��� 6 6 1,831 2,386\n 5 ��� 3 3 15,068 14,346\n 6 ��� 7 8 6,165 7,221\n 7 ����� 3 3 594 574\n 8 ������� 21 22 185,478 145,049\n 9 ������� 6 7 3,048 4,268\n10 ����� 7 7 6,497 8,557\n11 ��� 1 1 1,888 1,427\n12 ����� 1 1 1,264 1,529\n13 ����� 6 7 1,531 2,748\n14 ����� 4 4 2,394 2,394\n15 ������� 5 5 7,246 5,548\n16 ����� 1 1 8,774 3,637\n17 ��� 2 2 327 327\n18 ����� 1 1 100 100\n19 ����� 5 - 22,289 -\n �� 211 204 475,038 419,440\n\n[���]\n ‘24� ‘23� ‘24� �� ‘23� ��\n ���\n ��� ��� (���) (���)\n 1 ��� 25 14 21,558 3,899\n 2 ������� 10 11 78,593 11,024\n 3 ���� 7 8 789 736\n 4 ���� 10 10 2,508 1,731\n 5 ���� 19 19 2,626 10,703\n 6 ���� 13 13 2,962 6,917\n 7 ���� 18 18 2709 3,314\n 8 ���� 8 10 �� 1,408\n 9 ������� 23 24 4,433 7,343\n10 ����� 31 31 10,005 9,628\n11 ����� 36 35 3,017 2,355\n12 ����� 11 11 316 321\n13 ����� 26 25 5,516 5,008\n14 ����� 22 26 3,487 6,459\n15 ����� 38 44 3685 3,848\n16 ����� 17 14 1,302 660\n17 ������� 8 9 96 373\n �� 322 322 143,602 75,727\n\n\n - 4 -\n"

Oh, this is too long even for an example. But you can realize that there are many \n characters
in the text. Let’s split the text by the newline character and look at the first 10 lines of the 4th
page. \n refers to a new line in the text. We can split the text into lines by using the str_split
function from the stringr package, which is part of tidyverse. So, we don’t need to load it
separately. Let’s look at the first six lines of the 4th page.

Look at the first 10 lines of the 4th page
pdf_text_all[4] |>
Split by newline character.
str_split("\n") |>
Unlist
unlist() |>
Take the first 10 lines
head(10)

[1] "�� ��� ���� � ��"
[2] "[������]"
[3] " ‘24� ‘23� ‘24� �� ‘23� ��"
[4] " ���"
[5] " ��� ��� (���) (���)"
[6] " 1 ��� 16 16 194,996 94,963"
[7] " 2 ��������� 6 6 32,852 40,283"

77

https://docs.ropensci.org/pdftools/reference/pdftools.html
https://docs.ropensci.org/pdftools/index.html
https://stringr.tidyverse.org/reference/str_split.html
https://stringr.tidyverse.org/
https://www.tidyverse.org/

[8] " 3 ��� 73 63 40,215 39,419"
[9] "3-1 �������� 37 41 42,514 44,664"
[10] " 4 ��� 6 6 1,831 2,386"

The 4th page in the pdf file looks like this:

78

Figure 9.1: 2024 Public Diplomacy Comprehensive Implementation Plan, p. 4

79

9.3 pdf Table Extraction

Let’s try to extract the second table on page 4 of the pdf file. The table has the number of public
diplomacy projects and budgets for first-tier local administration unit (hereafter, province_city
for short) in Korea. We will unlist each line as we did earlier so that we can see the table in a
more readable way.

Look at the first 10 lines of the 4th page
lines_pdf_4 <- pdf_text_all[4] |>
Split by newline character.
str_split("\n") |>
Unlist
unlist()

First, let’s look at the 29th and 30th lines for the column names in the pdf file.

lines_pdf_4[29:30]

[1] " ‘24� ‘23� ‘24� �� ‘23� ��"
[2] " ���"

The column names are the line number, province or city’s name, project numbers for 2024
and 2023 respectively, and the budget for 2024 and 2023 in million Korean Won respectively.
Let’s use the following English column names that correspond to the Korean column names
in the pdf file.

Column names
col_names <- c("no", "province_city", "project_no_2024", "project_no_2023", "budget_2024", "budget_2023")

By observing the lines_pdf_4 object using view(lines_pdf_4), we can see that the sec-
ond table starts from the 32nd line and ends on the 48th. We will extract only those lines.
We will use str_trim “removes whitespace from start and end of string”. We will also use
str_replace_all to remove commas from each line to convert entries into numbers. We will
then split each line based on two or more consecutive spaces (our string is “\s{2,}”) using
str_split and simplify the result into a matrix. We will convert this matrix into a data frame
with non-factor columns using data.frame(stringsAsFactors = FALSE). We will set the col-
umn names of the data frame using the col_names vector that we created above. These
explanations are also available in each step in the following code chunk.

80

https://www.mois.go.kr/eng/sub/a03/citiesprovinces/screen.do
https://stringr.tidyverse.org/reference/str_trim.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_split.html

Select lines 32 to 48 from the lines_pdf_4 data frame
province_city_pd <- lines_pdf_4[32:48] |>
Trim whitespace from both ends of each element in the selected rows
str_trim() |>
Replace all commas with an empty string in each element
str_replace_all(",", "") |>
Split each element based on 2 or more consecutive spaces and simplify into a matrix
str_split("\\s{2,}", simplify = TRUE) |>
Convert the matrix into a data frame with non-factor columns
data.frame(stringsAsFactors = FALSE) |>
Set column names for the data frame using the provided 'col_names' vector
setNames(col_names)

Let’s rearrange the table (which is originally in alphabetical order) by descending order based
on public diplomacy budgets in 2024.

province_city_pd |>
arrange(desc(budget_2024))

no province_city project_no_2024 project_no_2023 budget_2024 budget_2023
1 8 ���� 8 10 �� 1408
2 17 ������� 8 9 96 373
3 3 ���� 7 8 789 736
4 2 ������� 10 11 78593 11024
5 13 ����� 26 25 5516 5008
6 9 ������� 23 24 4433 7343
7 15 ����� 38 44 3685 3848
8 14 ����� 22 26 3487 6459
9 12 ����� 11 11 316 321
10 11 ����� 36 35 3017 2355
11 6 ���� 13 13 2962 6917
12 7 ���� 18 18 2709 3314
13 5 ���� 19 19 2626 10703
14 4 ���� 10 10 2508 1731
15 1 ��� 25 14 21558 3899
16 16 ����� 17 14 1302 660
17 10 ����� 31 31 10005 9628

But these province_city names are in Korean since the document was in Korean. Let’s practice
extracting a table from internet then to find English names for these Korean provinces or cities.
As of May 6, 2024, Wikipedia’s list of South Korea’s administrative divisions seems to be
correct. Let’s extract the table there.

81

https://en.wikipedia.org/wiki/Administrative_divisions_of_South_Korea

9.4 html Table Extraction

We will use the rvest package to extract the table from the Wikipedia page. We will use
the read_html function to read the html content of the Wikipedia page. We will then use
the html_node function to select the table we want to extract. You can refer to rvest pack-
age for more information on how to extract what you want. We can use the xpath of the
table we want to extract. You can find the xpath of the table by right-clicking on the table on
the Wikipedia page and selecting “Inspect” or “Inspect Element” depending on your browser.
You can then right-click on the highlighted html element in the “Elements” tab of the “Devel-
oper Tools” and select “Copy” -> “Copy XPath”. The xpath of the table we want to extract
is //*[@id="mw-content-text"]/div[1]/table[5]. We will use the html_table function to
extract the table as a data frame. We will use the fill = TRUE argument to fill in the missing
values in the table.

html <- read_html("https://en.wikipedia.org/wiki/Administrative_divisions_of_South_Korea")

table <- html |>
html_node(xpath = '//*[@id="mw-content-text"]/div[1]/table[5]') |>
html_table(fill = TRUE)

Let’s look at the first 10 rows of the table.

head(table)

A tibble: 6 x 9
Code Emblem Name Official English nam~1 Hangul Hanja Population 2020 Cens~2
<chr> <lgl> <chr> <chr> <chr> <chr> <chr>

1 KR-11 NA Seoul~ Seoul ��~ .mw-~ 9,586,195
2 KR-26 NA Busan~ Busan ��~ ��~ 3,349,016
3 KR-27 NA Daegu~ Daegu ��~ ��~ 2,410,700
4 KR-28 NA Inche~ Incheon ��~ ��~ 2,945,454
5 KR-29 NA Gwang~ Gwangju ��~ ��~ 1,477,573
6 KR-30 NA Daeje~ Daejeon ��~ ��~ 1,488,435
i abbreviated names: 1: `Official English name[5]`,
2: `Population 2020 Census`
i 2 more variables: `Area (km2)` <chr>,
`Population density 2022 (per km2)` <chr>

Perfect! Now, let’s keep only the columns that we will need.

82

https://rvest.tidyverse.org/
https://rvest.tidyverse.org/reference/read_html.html
https://rvest.tidyverse.org/reference/html_nodes.html
https://rvest.tidyverse.org/
https://rvest.tidyverse.org/reference/html_table.html

Select columns 4 and 5 from the table
table <- table |>
select(4:5)

Let's change the English province_city column name.

table <- table |>
rename(province_city_eng = `Official English name[5]`)

Let’s hope that the Korean names in the Wikipedia table and the MOFA’s pdf file are the same.
Let’s merge the two tables based on the Korean names.

Merge the two tables based on the Korean names
province_city_pd_joined <- province_city_pd |>
left_join(table, by = c("province_city" = "Hangul"))

Let’s see if we have any missing values in the English names.

Check for missing values in the English names
province_city_pd_joined |>
filter(is.na(province_city_eng))

no province_city project_no_2024 project_no_2023 budget_2024 budget_2023
1 5 ���� 19 19 2626 10703
province_city_eng

1 <NA>

We almost got it! The only difference is 전라북도 (North Jeolla Province) in the MOFA’s pdf
file which is written as 전북특별자치도 (Jeonbuk State) in the Wikipedia table. Let’s fix this.

Move the English name column next to the Korean name column, and remove the 'no' column

province_city_pd_joined <- province_city_pd_joined |>
select(province_city, province_city_eng, everything(), -no)

Fix the English name of ����

province_city_pd_joined <- province_city_pd_joined |>
mutate(province_city_eng = ifelse(province_city == "����", "North Jeolla province_city", province_city_eng))

83

9.5 Text Analysis

9.5.1 Word Frequency

This time let’s look at all of the text in the 2024 Public Diplomacy Comprehensive Implemen-
tation Plan. We will combine all the text into a single character vector.

Combine text
pdf_text <- str_c(pdf_text_all, collapse = " ")

We will now split the text into words using the str_split function from the stringr pack-
age. We will then convert the result into a data frame with non-factor columns using the
data.frame(stringsAsFactors = FALSE) function. We will set the column name of the data
frame as word.

Split the text into words
words <- pdf_text |>
Split the text into words
str_split("\\s+") |>
Convert the result into a data frame with non-factor columns
data.frame(stringsAsFactors = FALSE) |>
Set the column name of the data frame as "word"
setNames("word")

Let’s look at the first 10 rows of the data frame.

head(words, 10)

word
1
2 2024�
3 ����
4 ������
5 ��
6 �
7 ��
8 ��
9 �
10 �����

84

https://stringr.tidyverse.org/reference/str_split.html
https://stringr.tidyverse.org/
https://rdocumentation.org/packages/base/versions/3.6.2

Now, let’s count the frequency of each word in the text using the count function from the
dplyr package package. We will then arrange the result in descending order based on the
frequency of the words.

Count the frequency of each word
word_freq <- words |>
count(word, sort = TRUE)

Let’s look at the first 10 rows of the data frame

head(word_freq, 10)

word n
1 � 72
2 - 55
3 ���� 40
4 � 33
5 � 28
6 ��, 22
7 �� 22
8 �� 18
9 �� 18
10 �� 17

This is not very useful. There are two main issues with Korean text. First, Korean text does
not have consistent spacing between words. Second, Korean text has particles and other
morphemes that are not words. We will address these issues now.

9.5.2 Spacing in Korean Text

Let’s get the spacing right in Korean text using the bitNLP package’s get_spacing function,
which will add spaces between words in the Korean text. So, for example “한국공공외교” will
become “한국공공외교”.

Get the spacing right in Korean text
pdf_text_ko <- get_spacing(pdf_text)

Now, let’s split the text into words again using the str_split function from the stringr pack-
age.

85

https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/
https://r2bit.com/bitNLP
https://r2bit.com/bitNLP/reference/get_spacing.html
https://stringr.tidyverse.org/reference/str_split.html
https://stringr.tidyverse.org/

Split the text into words
words_ko <- pdf_text_ko |>
Split the text into words
str_split("\\s+") |>
Convert the result into a data frame with non-factor columns
data.frame(stringsAsFactors = FALSE) |>
Set the column name of the data frame as "word"
setNames("word")

Let’s analyze the word frequency in the text again.

Count the frequency of each word
word_freq_ko <- words_ko |>
count(word, sort = TRUE)

head(word_freq_ko, 10)

word n
1 � 175
2 (97
3 - 80
4 � 73
5 �� 67
6 �� 62
7 �� 36
8 �� 35
9 � 33
10 �� 30

We have many special characters in the text. Let’s remove all characters except for Korean
characters, spaces, English letters, and numbers using the str_replace_all function from
the stringr package.

Remove all characters except for Korean characters, spaces, English letters, and numbers
word_freq_ko <- pdf_text_ko |>
Remove all characters except Korean characters, English letters, numbers, and spaces
str_replace_all("[^�-�a-zA-Z0-9\\s]", "") |>
Split the cleaned text into words based on one or more spaces
str_split("\\s+") |>
Convert the list result into a data frame with non-factor columns
data.frame(stringsAsFactors = FALSE) |>

86

https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/

Set the column name of the data frame as "word"
setNames("word")

Let’s analyze the word frequency in the text again.

Count the frequency of each word
word_freq_ko <- word_freq_ko |>
count(word, sort = TRUE)

head(word_freq_ko, 10)

word n
1 � 73
2 �� 67
3 �� 62
4 �� 44
5 �� 37
6 �� 36
7 � 35
8 �� 30
9 �� 29
10 �� 28

This is much better! We have removed the special characters and have more meaningful
words in the text. Let’s move on to morpheme analysis which makes more sense in Korean
text analysis context.

9.5.3 Morpheme Analysis in Korean Text

Let’s analyze the morphemes in the Korean text using the morpho_mecab function from the
bitNLP package, which will extract morphemes from the Korean text.

Analyze the morphemes in the Korean text
morphemes <- morpho_mecab(pdf_text_ko)

This creates a list of character vectors, where each element corresponds to a morpheme in
the text. We can also combine all of the morphemes and tokenize them into a single character
vector.

87

https://r2bit.com/bitNLP/reference/morpho_mecab.html
https://r2bit.com/bitNLP

Combine all the morphemes into a single character vector

morphemes_single <- morpho_mecab(pdf_text_ko, indiv = FALSE)

Now, let’s split the text into words again this time by converting morphemes_single into a data
frame using the as.data.frame function. We will set the column name of the data frame as
“word”.

Split the text into words
words_morphemes <- morphemes_single |>
as.data.frame() |>
Set the column name of the data frame as "word"
setNames("word")

We will now count the frequency of each morpheme in the text using the count function from
the dplyr package package. We will then arrange the result in descending order based on
the frequency of the morphemes.

Count the frequency of each morpheme

morpheme_freq <- words_morphemes |>
count(word, sort = TRUE)

head(morpheme_freq, 10)

word n
1 �� 68
2 �� 62
3 �� 46
4 �� 39
5 �� 37
6 �� 30
7 �� 29
8 �� 28
9 �� 26
10 �� 25

Now, this is more like it!

Let’s visualize the frequency of the morphemes in the text using a bar plot. We will use
the ggplot function from the ggplot2 package to create the plot. We will use the geom_col

88

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/as.data.frame
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/reference/geom_col.html

function to add the bars to the plot. We will use the theme_minimal function to set the theme
of the plot to minimal. We will use the theme function to adjust the font size in the plot. We will
set the font size to 10. We will use the labs function to add the title and labels to the plot.

Visualize the frequency of the morphemes in the text

morpheme_freq |>
Create a bar plot
ggplot(aes(x = reorder(word, n), y = n)) +
geom_col(fill = "#2196f3") +
theme_minimal() +
theme(text = element_text(size = 10)) +
labs(title = "Frequency of Morphemes in the 2024 Public Diplomacy Comprehensive Implementation Plan",

x = "Morpheme",
y = "Frequency")

0

20

40

60

...

Morpheme

F
re

qu
en

cy

Frequency of Morphemes in the 2024 Public Diplomacy Comprehensive Implementation Plan

9.5.4 Word Network in Korean Text

Let’s analyze the word network in the Korean text using the tokenize_noun_ngrams
function from the bitNLP package which builds on tidytext package. We will use the
tokenize_noun_grams function to extract the noun word network from the Korean text.

89

https://ggplot2.tidyverse.org/reference/theme_minimal.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/labs.html
https://r2bit.com/bitNLP/reference/tokenize_noun_ngrams.html
https://r2bit.com/bitNLP/
https://r2bit.com/bitNLP/articles/with_tidytext.html

We can use a user-defined dictionary to improve the accuracy of the tokenization. We will rely on the one provided by the `bitNLP` package.

dic_path <- system.file("dic", package = "bitNLP")
dic_file <- glue::glue("{dic_path}/buzz_dic.dic")

word_network <- tokenize_noun_ngrams(pdf_text_ko, simplify = TRUE, user_dic = dic_file, n = 2) |>
as_tibble() |>
setNames("paired_words")

Now, let’s separate the paired words into two columns using the separate function from the
tidyr package which is loaded as part of the tidyverse package. This will allow us to create
bigrams from the paired words.

word_network_separated <- word_network |>
separate(paired_words, c("word1", "word2"), sep = " ")

We will now count the frequency of each bigram in the text using the count function from the
dplyr package package, which is also party of the tidyverse. We will then arrange the result
in descending order based on the frequency of the bigrams.

new bigram counts:
word_network_counts <- word_network_separated |>
count(word1, word2, sort = TRUE)

Korean text sometimes is not visible in the graph due to the font issue. This was the case
in my Macbook. Let’s set the font to one that supports Korean characters. We will use the
extrafont package to set the font to one that supports Korean characters. We will use the
font_import function to import the fonts from the system. This may take some time. You only
need to do it once. That’s why I commented it. You can uncomment it in first usage.

Load extrafont and register fonts

#font_import() # This might take a while if it's the first time you're running it

We will then use the loadfonts function to load the fonts. We will use the fonts function to
display the available fonts and find one that supports Korean characters. We will set the font
to one that supports Korean characters. For now, I have chosen “Arial Unicode MS” as the
Korean font. You can replace it with a font from your system that supports Korean characters
if necessary.

90

https://tidyr.tidyverse.org/reference/separate.html
https://tidyr.tidyverse.org/
https://www.tidyverse.org/
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/
https://www.tidyverse.org/
https://github.com/wch/extrafont
https://github.com/wch/extrafont
https://github.com/wch/extrafont
https://github.com/wch/extrafont

#loadfonts(device = "all")

Display available fonts, find one that supports Korean
#fonts()

Set the font to one that supports Korean characters
korean_font <- "Arial Unicode MS" # Replace with a font from your system that supports Korean if necessary

Wewill now create a graph from the bigram counts using the graph_from_data_frame function
from the igraph package. We will use the ggraph function from the ggraph package to create
the graph. Wewill use the geom_edge_link function to add the edges to the graph. Wewill use
the geom_node_point function to add the nodes to the graph. We will use the geom_node_text
function to add the labels to the nodes in the graph. We will set the font to the Korean font
that we set earlier. We will then adjust the font in the graph. Here, n >= 6 is used to filter
out bigrams that appear less than 6 times. You can adjust this number as needed. You can
check out ggraph layout options here.

word_network_select <- word_network_counts |>
filter(n >= 6) |>
graph_from_data_frame() |>
ggraph(layout = "fr") +
geom_edge_link(aes()) +
geom_node_point(color = "#2196f3", size = 4) +
geom_node_text(aes(label = name), family = korean_font, vjust = 2, size = 4) + # Set family to Korean font
theme_void()

word_network_select

91

https://r.igraph.org/reference/graph_from_data_frame.html
https://r.igraph.org/
https://ggraph.data-imaginist.com/reference/ggraph.html
https://ggraph.data-imaginist.com
https://ggraph.data-imaginist.com/reference/geom_edge_link.html
https://ggraph.data-imaginist.com/reference/geom_node_point.html
https://ggraph.data-imaginist.com/reference/geom_node_text.html
https://cran.r-project.org/web/packages/ggraph/vignettes/Layouts.html

..

..

..

..

..

..

..

..

..

..

..

...

..

..

...

..

...

..

...

...

.. ..
...

..

..

..

..
..

.. ..

..

..

...

..

..

..

9.5.5 Sentiment Analysis

9.5.6 Topic Modeling

9.6 Korean Tweet Analysis

9.7 Further Readings

9.8 References

9.9 Session Info

sessionInfo()

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.4.1

92

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Asia/Seoul
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] extrafont_0.19 ggraph_2.2.1 igraph_2.0.3 tidytext_0.4.2
[5] rvest_1.0.4 pdftools_3.4.0 lubridate_1.9.3 forcats_1.0.0
[9] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 readr_2.1.5
[13] tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0
[17] bitNLP_1.4.3.9000

loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 viridisLite_0.4.2 farver_2.1.1
[4] viridis_0.6.5 fastmap_1.1.1 tweenr_2.0.3
[7] janeaustenr_1.0.0 promises_1.3.0 shinyjs_2.1.0
[10] digest_0.6.35 timechange_0.3.0 mime_0.12
[13] lifecycle_1.0.4 qpdf_1.3.3 tokenizers_0.3.0
[16] magrittr_2.0.3 compiler_4.4.0 rlang_1.1.3
[19] sass_0.4.9 tools_4.4.0 utf8_1.2.4
[22] knitr_1.46 labeling_0.4.3 askpass_1.2.0
[25] graphlayouts_1.1.1 htmlwidgets_1.6.4 curl_5.2.1
[28] xml2_1.3.6 miniUI_0.1.1.1 ngram_3.2.3
[31] withr_3.0.0 grid_4.4.0 polyclip_1.10-6
[34] fansi_1.0.6 xtable_1.8-4 colorspace_2.1-0
[37] extrafontdb_1.0 scales_1.3.0 MASS_7.3-60.2
[40] tinytex_0.50 cli_3.6.2 rmarkdown_2.26
[43] generics_0.1.3 RcppParallel_5.1.7 rstudioapi_0.16.0
[46] httr_1.4.7 tzdb_0.4.0 cachem_1.0.8
[49] ggforce_0.4.2 RcppMeCab_0.0.1.2 parallel_4.4.0
[52] rhandsontable_0.3.8 vctrs_0.6.5 Matrix_1.7-0
[55] jsonlite_1.8.8 hms_1.1.3 ggrepel_0.9.5
[58] jquerylib_0.1.4 shinyBS_0.61.1 glue_1.7.0
[61] stringi_1.8.3 gtable_0.3.5 later_1.3.2
[64] munsell_0.5.1 pillar_1.9.0 htmltools_0.5.8.1

93

[67] R6_2.5.1 tidygraph_1.3.1 evaluate_0.23
[70] shiny_1.8.1.1 lattice_0.22-6 SnowballC_0.7.1
[73] memoise_2.0.1 DataEditR_0.1.5 httpuv_1.6.15
[76] bslib_0.7.0 Rcpp_1.0.12 Rttf2pt1_1.3.12
[79] gridExtra_2.3 xfun_0.43 pkgconfig_2.0.3

94

10 Statistical Analysis

95

11 Storytelling with Quarto

96

12 Productivity Tools

Setting up Github.

Creating a new Github project.

Copilot etc.

97

13 Working with API to get Korean Data

WDI etc. readily available packages

Creating your own API

https://httr2.r-lib.org/articles/wrapping-apis.html

https://www.andrewheiss.com/blog/2024/01/12/diy-api-plumber-quarto-ojs/_book/

98

https://httr2.r-lib.org/articles/wrapping-apis.html
https://www.andrewheiss.com/blog/2024/01/12/diy-api-plumber-quarto-ojs/_book/

14 Making Korean Data Visualization Social

14.1 #kdiplo #kdiploviz

I love Korea, and I love data.

Combining my enthusiasm for Korean Studies and data, I am initiating an exciting project
to make engaging and valuable Korean datasets publicly accessible… in an enjoyable man-
ner!

I invite you to explore and interact with the data I will be sharing. Let’s craft stories together
using these datasets and connect through the hashtags #kdiplo, #kdiploviz, #kdata, and
#kdataviz.

Recently, I have created several novel datasets on Korean diplomacy for my research1, mainly
focusing on high-level diplomatic visits (both outgoing and incoming), their formats (bilateral,
multilateral, informal), nature (such as state visits), purposes (economic, security, etc.), time-
lines, and the conveners in multilateral contexts among others.

I will make these datasets available via a new R package, #kdiplo. Although this is a work in
progress, the first version is already shaping up.

The current development version features a pivotal function (along with an accompanying
dataset) designed to assist researchers in merging various Korean datasets by country names.
Due to inconsistent naming conventions across Korean government datasets (for instance,
Thailand might appear as 태국 [Taeguk] or 타이 [Tai]), the kdiplo::iso3c function creates iso3c
country codes for Korean country names, simplifying the joining process (similar to coun-
trycode::countrycode).

Next on the agenda is adding comprehensive Korean trade data spanning from 1948 to 2023,
inclusive of multiple sources and estimations/ imputations for missing data.

More datasets are on the way, and I am open to data requests.

Stay tuned (follow hashtags #kdiplo, #kdiploviz #kdata, and #kdataviz) for more updates on
(https://github.com/kjayhan/kdiplo) - a one-stop public repository for data insights on Korean
diplomacy and foreign policy!

For now check this website out, which I will soon update as well.

1See these blog posts for now.

99

https://www.linkedin.com/feed/hashtag/?keywords=kdiplo
https://www.linkedin.com/feed/hashtag/?keywords=kdiploviz
https://www.linkedin.com/feed/hashtag/?keywords=kdata
https://www.linkedin.com/feed/hashtag/?keywords=kdiplo
https://github.com/kjayhan/kdiplo
https://www.linkedin.com/feed/hashtag/?keywords=kdiplo
https://www.linkedin.com/feed/hashtag/?keywords=kdiploviz
https://www.linkedin.com/feed/hashtag/?keywords=kdata
https://www.linkedin.com/feed/hashtag/?keywords=kdiplo
https://kdiplo.netlify.app/datasets.html
https://ayhan.phd/blog/#category=diplomacy

14.2 #kdata #kdataviz

While my main interests in Korean Studies lie in foreign policy and (public) diplomacy, I am
also interested in everything related to Korea, from business to education to culture.

Indeed, I was trained as an economist, with a double major in international trade, wrote my
master’s thesis on Korean popular culture (from an international relations angle), and have
published at least 8 peer-reviewed articles on international student mobility programs (from a
public diplomacy angle).

So… in addition to the #kdiplo package, I am happy to announce that, I am also building
another package, #kdata, dedicated to datasets on Korean business, culture, and education.
Although this is a work-in-progress, I have already uploaded multiple datasets to the #kdiplo
repository. I will upload documentation and vignettes for these datasets soon.

To kick things off with the vibrant Spring season in Korea, I present our first challenge: the
Korean Festivals dataset! ���

Explore and interact with the data available at #kdiplo kdiplo::korean_festivals_data.

Check out my blog post where I’ve used this dataset.

I encourage you to dive into this dataset and share your insights. Remember to use hash-
tags #kdiplo, #kdiploviz #kdata, and #kdataviz in your posts across various social media
platforms!

100

https:://ayhan.phd/research
https://github.com/kjayhan/kdiplo
https://github.com/kjayhan/kdata
https://github.com/kjayhan/kdiplo
https://github.com/kjayhan/kdiplo
https://ayhan.phd/blog/2024-03-23%20Geolocations%20of%20All%20Korean%20Festivals/
https://www.linkedin.com/feed/hashtag/?keywords=kdiplo
https://www.linkedin.com/feed/hashtag/?keywords=kdiploviz
https://www.linkedin.com/feed/hashtag/?keywords=kdata
https://www.linkedin.com/feed/hashtag/?keywords=kdiplo

15 R for Korean Studies Bootcamps

I plan to organize bootcamps to help Korean Studies scholars and students to jumpstart their
R learning with Korean Studies-based examples.

You can sign up for my newsletter to get updates on the workshops.

You can find more information about the bootcamps here.

101

https://mailchi.mp/732c19b8a9c7/k-analytics
https://k-a.phd/r4ks.html

References

Ayhan, Kadir Jun. 2024. R for Korean Studies: A Gentle Introduction to Computational Social
Science. Draft Version 0.0.1. https://r4ks.com.

102

https://r4ks.com

	Preface
	Current Status of the book
	How to Cite This Book
	Introduction
	``Why Do I Need Computational Tools in Korean Studies?''
	``Why R?''
	``I don't know anything about coding! Indeed, I am frustrated about coding!''

	Setting Up
	Installing R
	Installing RStudio
	Running R on RStudio
	Further Information

	Korean Studies Data Sources
	Statistical Data
	Text Data

	The Basics of R
	Creating a Project
	Scripting in R
	Creating a New R Script
	Creating a Quarto File

	Installing Packages
	Loading Packages
	Assigning Values to Variables
	Make sure to get the spelling right!
	Data Types
	Vectors
	Dataframes
	Some Basic Functions
	Rows and Columns
	Piping

	Data Wrangling
	Selecting columns
	Filtering rows
	Arranging rows
	Mutating columns
	Grouping and summarizing data
	Conditional Mutating
	Merging datasets
	inner_join
	left_join
	right_join
	full_join
	anti_join

	A Note on Country Codes
	A Note on Working with Korean Country Names
	Converting wide data to long format
	iso3c_kr function to convert Korean country names to iso3c country codes

	Working with dates

	Data Visualization: Tables
	Data Visualization: Plots
	Histograms
	Bar Plots
	Line Plots
	Scatter Plots

	Data Visualization: Maps
	Korean Text Analysis
	Libraries
	Loading pdf Data
	pdf Table Extraction
	html Table Extraction
	Text Analysis
	Word Frequency
	Spacing in Korean Text
	Morpheme Analysis in Korean Text
	Word Network in Korean Text
	Sentiment Analysis
	Topic Modeling

	Korean Tweet Analysis
	Further Readings
	References
	Session Info

	Statistical Analysis
	Storytelling with Quarto
	Productivity Tools
	Working with API to get Korean Data
	Making Korean Data Visualization Social
	#kdiplo #kdiploviz
	#kdata #kdataviz

	R for Korean Studies Bootcamps
	References

